1、合上空气开关Q,控制电路有电。假设原来晶闸管VT截止,KA失电,接触器KM线圈通电,主电路接成正转。控制电路中左边的单晶管BT33旁边的100uF电容通过RP1和24kΩ电阻充电延时。
2、当左边BT33旁100uF电容电压达到一定值后左边的单晶管BT33导通,电容通过47Ω电阻放电,使VT的控制极获得高电位,VT导通,KA线圈通电,接触器KM线圈失电,主电路接成反转。同时,KA常开辅助触头将上述100uF电容旁路,使左边的BT33管不再导通。

3、VT导通后,右边的BT33管旁边的100uF电容开始有了充电回路,且开始充电,充电延时时间到,右边BT33管也导通,100uF电容向10uF电容和100Ω电阻放电,使得VT阴极电位为正阳极电位为负,即VT反偏,并截止。VT截止后,KA失电,接触器KM线圈通电,主电路接成正转。
4、左边BT33管旁100uF电容再次开始充电延时。又重新开始“1、”步及以后的工作。就这样通过左右两个BT33管对VT的控制,使KA反复导通与截止,电动机就一会儿接成正转,一会儿接成反转。调节两个电位器RP可调节BT33管旁边100uF电容的充电延时时间,从而控制电动机正反转的切换时间。——
这就是电动机正反转定时控制电路的工作原理。
在数字电路中,微分定时电路的作用和原理
与一般的555单稳电路不同的是在第5脚接有一只二极管VD1,将该脚与电源电压+6V接通。该脚是555的控制端,与内部2/3电源分压点相接,接入VD1后,则该点将被箝位在53V(06-07=53V),其中07V是VD1的导通压降。
这样就使得阈值电压也相应提高到53V,从而使得C1的充电时间有较大延长,一般来说,可以在相同R、C时间常数下使定时时间增大数倍。
计时开始前,先按动一下S1,计时开始,定时时间到时,555第3脚输出低电平,继电器K线圈失电断开,实现被控负载延时关断的功能。
增大C1的容量可以获得更长的延时时间。
扩展资料分段式定时器

本电路由2只555电路组成,U1、R1、RP1、C1等组成第一级单稳态定时电路,U2、R2、RP2、C3等组成第二级单稳态电路,两极电路构成分段定时电路。
分段式定时器原理图
原理介绍
当按下S1,持续1、2秒钟,C1充满电荷,U1的第2、6脚为高电平,故U1复位,第3脚输出低电平,通过R2、RP2使U2置位,第3脚输出高电平,继电器K线圈得电吸合,定时时间开始。之后,C1通过RP1放电,当C1两端电压放电至1/3的6V时,U1翻转,第3脚输出高电平,第一阶段时间结束,其时长为T1=11xRP1xC1。
接下来,第二阶段定时开始,U1第3脚的高电平通过R2、RP2,向C3充电,使得第6脚电位逐渐上升,升至6V的2/3时,U2复位,第3脚输出低电平,继电器K释放,第二阶段定时时间到。该段时长为:T2=11x(R2+RP2)xC3
因此,总时长就为:T总=T1+T2。本电路可以实现用较小的阻容元件实现较长的定时时间。

微分电路的工作过程是:如RC的乘积,即时间常数很小,在t=0+即方波跳变时,电容器C
被迅速充电,其端电压,输出电压与输入电压的时间导数成比例关系。
实用微分电路的输出波形和理想微分电路的不同。即使输入是理想的方波,在方波正跳变时,其输出电压幅度不可能是无穷大,也不会超过输入方波电压幅度E。在0<t<T
的时间内,也不完全等于零,而是如图1d的窄脉冲波形那样,其幅度随时间t的增加逐渐减到零。同理,在输入方波的后沿附近,输出u0(t)是一个负的窄脉冲。这种RC微分电路的输出电压近似地反映输入方波前后沿的时间变化率,常用来提取蕴含在脉冲前沿和后沿中的信息。
微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与RC有关(即电路的时间常数),RC越小,尖脉冲波形越尖,反之则宽。此电路的RC必须少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般RC少于或等于输入波形宽度的1/10就可以了。使输出电压与输入电压的时间变化率成比例的电路。微分电路主要用于脉冲电路、模拟计算机和测量仪器中。


