交流接触器按钮接线图麻烦讲解下

核心提示1、下图为交流接触器按钮接线图。2、交流接触器按钮接线图工作原理:21、启动时,按下启动按钮,由电源来的控制电流经断路器--电源线--停止按钮--自锁线--启动按钮--启动线--线圈A2到线圈A1,接触器线圈得电吸合,主触点接通负载,辅助常

1、下图为交流接触器按钮接线图。

2、交流接触器按钮接线图工作原理:

21、启动时,按下启动按钮,由电源来的控制电流经断路器--电源线--停止按钮--自锁线--启动按钮--启动线--线圈A2到线圈A1,接触器线圈得电吸合,主触点接通负载,辅助常开点闭合自保持(自锁)。此时松开启动按钮,由于接触器辅助常开点已经闭合短接了启动按钮,接触器仍保持得电运行状态。

22、停机时,按下停止按钮--控制回路断电--接触器弹出复位--主触头断开负载辅助触点断开控制回路,松开停止按钮,由于辅助常开点(自锁点)已经复位,接触器保持断电状态。

扩展资料:

接触器分为交流接触器(电压AC)和直流接触器(电压DC),它应用于电力、配电与用电场合。接触器广义上是指工业电中利用线圈流过电流产生磁场,使触头闭合,以达到控制负载的电器。

在电工学上,因为可快速切断交流与直流主回路和可频繁地接通与大电流控制(达800A)电路的装置,所以经常运用于电动机做为控制对象﹐也可用作控制工厂设备﹑电热器﹑工作母机和各样电力机组等电力负载,接触器不仅能接通和切断电路,而且还具有低电压释放保护作用。接触器控制容量大,适用于频繁操作和远距离控制,是自动控制系统中的重要元件之一。

在工业电气中,接触器的型号很多,工作电流在5A-1000A的不等,其用处相当广泛。

按主触点连接回路的形式分为:直流接触器、交流接触器。

按操作机构分为:电磁式接触器、永磁式接触器。

永磁交流接触器是利用磁极的同性相斥、用永磁驱动机构取代传统的电磁铁驱动机构而形成的一种微功耗接触器国内成熟的产品型号:CJ20J、NSFC1、NSFC2、NSFC3、NSFC4、NSFC5、NSFC12、NSFC19、CJ40J、NSFMR。

直流接触器

直流接触器国内外的发展状况

接触器总体的发展趋势将朝着长电气寿命、高可靠性、多功能、环保型、多规格、智能化、可通信化的方向发展。

混合式直流接触器

直流电流与交流电流相比较,不存在周期性的电流数值过零点,因此,传统接触器开断电路时,触头之间产生的电弧较为强烈,燃弧时间也比较长,以便充分释放电路中剩余的能量。电弧的燃烧产生高温和强光,对触头表面有严重的烧蚀作用,触头材料在多次开断之后逐渐流失,触头电磨损严重时,导致直流接触器报废,不能开断电路。

电力电子技术得以迅猛发展,人们将电力电子元件应用到直流接触器中,巧妙的创造出一种混合式直流接触器,使得直流接触器向智能化、可控化迈进了新的一步。这种混合式接触器利用传统直流接触器在闭合导通状态下触头接触电阻小、导通压降小的优点,将由反并联晶闸管和控制模块单元共同组成的无触点开关并联在传统直流接触器触头上。这种无触点的电力电子开关分断电路时不产生电弧,这就避免了传统接触器中电弧对触头材料的电磨损,也就大大增加了触头的使用寿命和可靠性。 

直流接触器永磁机构

直流接触器作为应用广泛的电气开关之一,其生产和需求数量巨大,在正常使用过程中,电磁铁线圈一直通电工作,产生电磁吸力,保证铁芯和衔铁吸合,带动动、静触头闭合,接通电路。在上述过程中,线圈本身存在电阻,持续消耗电能,这是直流接触器主要的使用成本之一,浪费了大量的能源和财产。

动机构是一种在传统直流接触器电磁操动机构基础上发展而来,将电磁操动机构和永磁铁相结合的混合型操动机构,不单单使用原有的电磁吸力和弹簧反力作为铁心吸合与分离的动力,而是加入了永磁铁对铁心的吸引力,采用储能电容充放电提供合闸、分闸电力,通常称之为“电磁操动,永磁保持,电子控制”。

在分、合闸运动过程中,电磁吸力,永磁吸力与弹簧作用力共同作用,在稳定工作过程中,采用永磁吸力代替之前的电磁吸力,保持衔铁与铁芯心的吸合状态。一则,永磁操动机构大量节约了保持线圈的电能消耗,环保节能。二则,永磁体保持吸合与电磁吸合相比,噪音低,无污染。三则,永磁操动机构剔除了电磁机构中一系列复杂繁琐锁扣保护装置,大大提高了接触器操动机构的工作可靠性,降低了生产工序和成本,减小了接触器的体积。

参考资料:

-交流接触器

接触器双重联锁正反转控制电路的实物连接图?

交流接触器接线图(电动机正反转)

为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制电路。线路分析如下:一、正向启动:1、合上空气开关QF接通三相电源2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接通电动机,电动机这时的相序是L1、L2、L3,即正向运行。二、反向启动:1、合上空气开关QF接通三相电源2、按下反向启动按钮SB2,KM2通电吸合并通过辅助触点自锁,常开主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。三、互锁环节:具有禁止功能在线路中起安全保护作用1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。当正转接触器KM1线圈通电动作后,KM1的辅助常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路环节称为互锁环节。2、按钮互锁:在电路中采用了控制按钮操作的正反传控制电路,按钮SB2、SB3都具有一对常开触点,一对常闭触点,这两个触点分别与KM1、KM2线圈回路连接。例如按钮SB2的常开触点与接触器KM2线圈串联,而常闭触点与接触器KM1线圈回路串联。按钮SB3的常开触点与接触器KM1线圈串联,而常闭触点压KM2线圈回路串联。这样当按下SB2时只能有接触器KM2的线圈可以通电而KM1断电,按下SB3时只能有接触器KM1的线圈可以通电而KM2断电,如果同时按下SB2和SB3则两只接触器线圈都不能通电。这样就起到了互锁的作用。四、电动机正向(或反向)启动运转后,不必先按停止按钮使电动机停止,可以直接按反向(或正向)启动按钮,使电动机变为反方向运行。五、电动机的过载保护由热继电器FR完成。电动机可逆运行控制接线示意图电动机可逆运行控制电路的调试1、检查主回路路的接线是否正确,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。2、检查接线无误后,通电试验,通电试验时为防止意外,应先将电动机的接线断开。故障现象预处理;1、不启动;原因之一,检查控制保险FU是否断路,热继电器FR接点是否用错或接触不良,SB1按钮的常闭接点是否不良。原因之二按纽互锁的接线有误。2、起动时接触器“叭哒”就不吸了;这是因为接触器的常闭接点互锁接线有错,将互锁接点接成了自己锁自己了,起动时常闭接点是通的接触器线圈的电吸合,接触器吸合后常闭接点又断开,接触器线圈又断电释放,释放常闭接点又接通接触器又吸合,接点又断开,所以会出现“叭哒”接触器不吸合的现象。3、不能够自锁一抬手接触器就断开,这是因为自锁接点接线有误。

两个按钮开关,一个交流接触器,怎样控制电机运行和停止,能给图吗?

双重联锁正反转控制电路接线图:

 1、电路原理图 

2、电路组成

本电路由电源隔离开关 QS;交流接触器 KM1、KM2;热继电器 FR;熔断器 FU1、FU2;启动按钮 SB2、SB3;停机按钮 SB1 及电动机 M 组成。

3、技术要求

按下 SB2 正转启动,按下 SB3 反转启动,启动后均能连续运行。

正转期间按下反转按钮,控制电路不应有任何反应,否则会导致电源短路。需要在控制电路中实施互锁控制。

按下 SB1,不论正转还是反转,都要停机。

4、工作原理

(1)合上 QS,电源引入。

(2)正转

按下 SB2→KM1 线圈得电→

→KM1 主触点闭合→电动机正转。

→KM1 动合触点闭合→实现自锁。

→KM1 动断触点断开→KM2 线圈支路断开→实现互锁。

(3)停转

按下 SB1→→KM1 线圈失电→

→KM1 主触点断开→电动机停转。  

→KM1 自锁触点断开→解除自锁。         

(4)反转

按下 SB3→KM2 线圈得电→

→KM2 主触点闭合→电动机反转。

→KM2 动合触点闭合→实现自锁。

→KM2 动断触点断开→KM1 线圈支路断开→实现互锁。 

→KM1 动断触点闭合→解除互锁,为 KM2 线圈得电做准备。

两个按钮开关,就是一个是启动按钮,一个是停止按钮。下图就是通用的图纸。

当接触器线圈通电后,线圈电流会产生磁场,产生的磁场使静铁芯产生电磁吸力吸引动铁芯,并带动交流接触器点动作,常闭触点断开,常开触点闭合,两者是联动的。

当线圈断电时,电磁吸力消失,衔铁在释放弹簧的作用下释放,使触点复原,常开触点断开,常闭触点闭合。直流接触器的工作原理跟温度开关的原理有点相似。

扩展资料:

利用电磁力与弹簧弹力相配合,实现触头的接通和分断的。

当吸引线圈通电后,使静铁芯产生电磁吸力,衔铁被吸合,与衔铁相连的连杆带动触头动作,使常闭触头断接触器处于得电状态。

当吸引线圈断电时,电磁吸力消失,衔铁在复开,使常开触头闭合,位弹簧作用下释放,所有触头随之复位,接触器处于失电状态。

--交流接触器

--接触器

 
友情链接
鄂ICP备19019357号-22