功率放大器原理及电路中各元器件的作用

核心提示功率放大器的作用: 用作放大电路的输出级,以驱动执行机构。如使扬声器发声、继电器动作、 仪表指针偏转等常见:1乙类双电源互补对成功率放大电路2甲乙类互补对成功率放大电路3集成功率放大器 最简单的图如:数控音频功率放大器设计的工作原理是什么和

功率放大器的作用: 用作放大电路的输出级,以驱动执行机构。如使扬声器发声、继电器动作、 仪表指针偏转等

常见:

1乙类双电源互补对成功率放大电路

2甲乙类互补对成功率放大电路

3集成功率放大器 

最简单的图如:

数控音频功率放大器设计的工作原理是什么和有些什么基本功能?

步进电动机是将电脉冲激励信号转换成相应的角位移或线位移的离散值控制电动机。这种电动机每当输入一个电脉冲就动一步,所以又称脉冲电动机。步进电动机的转子由软磁材料或永磁材料制成多极的形式,定子上装有多相不同连接的控制绕组。它的激励信号有直流脉冲、方波、多相方波和逻辑序列多种。步进电动机的步距和速度不受电压波动、环境温度和负载变化的影响,而仅与脉冲频率有关。改变脉冲频率就能在很大范围内准确调节电动机的速度。因此步进电动机用于开环数字控制,可大大简化控制系统。步进电动机配以位置检测元件时也可用于闭环数字控制,常用于打印机、带读出器、计数器、绘图机、数控机床、阀门执行机构、定位平台和数模转换器等。步进电动机种类繁多,按运动形式分为旋转式步进电动机和直线式步进电动机。

音频功率放大器 求大大给分析下这个电路图 越详细越好 我是菜鸟

音频功率放大器电路设计

一、题目 音频功率放大器

二、电路特点

本电路由于采用了集成四运算放大器μPC324C和高传真功率集成块TDA2030,使该电路在调试中显得比较简单,不存在令初学者感到头疼的调试问题;与此同时它还具有优良的电气性能:

① 输出功率大:在±16V的电源电压下,该电路能在4Ω负载上输出每路不少于15W的不失真功率,或在8Ω负载上输出每路不少于10W的不失真功率,其相对应的音乐功率分别为30W和20W。

② 失真小:放大器在输出上述功率时,最大非线性失真系数小于1%,而频宽却能达到14kHz以上,音域范围内的频率失真很小,具备高传真重放的基本条件。

③ 噪音低:若把输入端短路,在扬声器1米外基本上听不到噪音,放送高传真节目时有一种宁静、舒适的感觉;另外由于使用性能优异的功率集成块,放大器的开机冲击声也很小。

该电路所采用的高传真功率集成块TDA2030是意大利SGS公司的产品,是目前音质较好的一种集成块,其电气性能稳定、可靠,能适应常时间连续工作,集成块内具有过载保护和热切断保护电路。电气性能参数如下:

电源电压Vcc

±6V~±18V

输出峰值电流

35A

功率带宽(-3dB)BW

10Hz~140KHz

静态电流Icco(电源电流)

<60μA

谐波失真度

<05%

三、电路图(另附)

四、电路原理

该电路是由前置输入级、中间级和输出级三部分组成的。

前置输入级是由集成运放1/4μPC324C组成的源级输出器,它具有输入阻抗较高而输出阻抗较低的特点。

中间级是由集成运放1/4μPC324C以及由R4、R5、R6;C4、C5、C6;Rw2、Rw3、组成的选频网络一起构成的电压并联负反馈式音调控制放大电路。它具有高低音提升或衰减功能。其工作原理如下:输入信号通过C4耦合,分两路输入运放,一路由R4、C4、Rw3输入到5反相端。集成运放B输出端经过R6、C5反馈到反相端,形成电压并联反馈;另一路由Rw2、C6、 R5、输入到反相端。在此电路中,选频网络中电容量较大的C4、C5对高频信号(高音)可看作短路,电容量叫小的C6对低频信号(低音)可看作开路,所有这些电容对中频信号(中音)可认为开路。根据反相比例运算关系可知,当Rw2、Rw3滑臂在中点时,放大倍数为-1。当Rw3滑点在A端,C4被短路,C5、Rw3并联与R6串联后阻抗增加,对低频信号来说负反馈增强,增益下降,其低音衰减过程,当Rw2滑至C处,R5、R6和R3并联后的阻抗减小,对高频信号负反馈削弱,增益提高,对高音起提升作用;在D点,R5、C6与R6并联后的阻抗减小,并联后阻抗减小,对高频信号负反馈增强,对高音起衰减作用。

输出级是功率放大器,它由集成运放TDA2030和桥式整流电路组成,其中组件C8、R9为电源退耦电路。

由于该电路为双声道功率放大器,所以下部分电路与上部分电路完全对称,故电路原理同上。

五、印刷电路板设计图(另附)

六、元器件清单及使用仪表工具

电阻:

R1

1K

R2

1K

R3

10

R4

100K

R5

100K

R6

33K

R7

100K

R8

33K

R9

10

R10

100K

R11

100K

R12

100K

R13

10K

R14

10K

R15

10K

R16

10K

R17

1K

R18

1K

R19

15K

R20

15K

R21

10K

R22

10K

R23

20K

R24

20K

R25

100K

R26

10K

R27

100K

R28

10K

电容:

C1

2200μ/16V

C2

2200μ/16V

C3

33μ/16V

C4

33μ/16V

C6

01

C7

220μ/16V

C8

220μ/16V

C9

10μ/16V

C11

10μ/16V

C12

10μ/16V

C13

33μ/16V

C14

33μ/16V

C16

10μ/16V

C17

0033

C18

0033

C19

3300

C21

10μ/6V

C22

10μ/16V

C23

0047

C23

0047

C25

300

C26

300

C20

3300

C15

10μ/16V

C5

01

C10

10μ/16V

其它组件:

TDA2030(两块)、QSZ2A50V、μPC324C(四块)、滑动变阻器Rw1、Rw2、Rw3、Rw4,散热片。

仪表工具:万用表。

七、电路制作及调试过程

首先在拿到电路图纸后,看清、弄懂逻辑电路图和印刷电路图。在熟知电路的原理和特性后,将印有印刷电路图的贴纸贴在所分发的金属板上,接着用小刀对其进行雕刻,将多余的贴纸刮去,并用盐酸和双氧水比例为1:3的溶液进行腐蚀。然后用清水把腐蚀后的电路板洗净,并在其上对照印刷电路板进行描点、打点,过后用砂纸将其打磨光滑,再用松香水均匀地涂抹在电路板上。收集齐所需的元件,并对元器件的质量进行判定。(注意:预留的集成块管脚的空间要准确,不能有太大的误差;同时二极管、电解电容的极性一定不能接反。)最后进行元器件的焊接,必须在集成块焊好的情况下才能接着对二极管、RC元件及导线等进行焊接。(因为集成块不能受热,所以动作一定要干净利落。)

在确认电路焊接无误后,开始进行电路的调试。先把电源接在③、④线上,⑥、①线接地,②、⑤线接入扬声器,用万用表对集成运放TDA2030和μPC324C的各引出管脚测出它们之间的电压与电流,并与其典型值进行对比,看看是否有明显的差距,判断集成电路工作是否正常。

功率放大器的工作原理是什么?

答:这个电路在设计上有很多问题,不能用。详细的等有时间再说。

       今天是11月24日,先聊聊设计功率放大器的基本思路。

       1功放的输入信号最大幅度是1V,有人理解为2Vp-p,有人理解为28Vp-p,经由功放放大到你设定的数值,并且能够提供足够的电流。

       2根据电路的繁简或者个人喜好,确定通频带宽度,通带内的频率特性应该尽可能平直。

       3当性能指标,电路程式选定后,要合理地分配各级增益,合理地选择负反馈形式和反馈深度。

       4功放各级在开环状态下,应该尽可能做到静态工作点稳定或基本稳定,不能依赖于大环直流负反馈。

       5功放各级都应该具有适度的本级负反馈量,减小本级失真,展宽本级通带,同时有利于本级工作点的稳定。就是说开环失真要尽可能小,不能依赖于大环反馈。

       6根据一些书刊的介绍,大环负反馈量以二,三十分贝为宜。

      接下来聊聊为什么说这个电路不能用。

      表面上看这个电路面面俱到,几乎各种技巧都用上了,负反馈对,射随器,自举电路,带宽限制等等,但是它依然是不能用。这里先从容易看到的说起。首先就是Q1A,它的发射极直接通地,而集电极负载大约90K, Ic只能在06mA以下,当基极处于负信号时,尽管有负反馈的作用,Q1A即使不被截止,也只能工作在截止区边缘。先说这些,等有时间再谈。

       11月26日     当基极处于信号的正半周时,有一个幅度不大的工作区,然后因饱和而被削顶。这里做了一个仿真,如下。

       虽然这是一个几十年前就普及了的老电路,但是学电子技术的人不能不去学习和实验!如果希望自己在直流电路和低频电路中使用晶体管能做到得心应手,这个电路实验和其它很多实验都是好机会。不要听外行人说什么晶体管电路过时了,他们是不负责任地瞎说。因为现实中会有很多必须使用晶体管解决问题的课题,而且任何IC的内部都是由很多单个的晶体管组成的,如果你的工作是设计专用的IC,没有晶体管电路的基础,就会无从下手!走自己的路!

功率放大器的原理是什么

高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,

以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内

的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。

高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划

分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器

通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大

器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或

其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能

量转换器件,它将电源供给的直流能量转换成为高频交流输出。

在 “低频电子线路”课程中已知,放大器可以按照电流导通角的不同,

将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,

适用于小信号低功率放大。乙类放大器电流的流通角约等于 180o;丙

类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。

丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放

大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于

低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调

谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。

除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工

作于开关状态的了类放大和戊类放大。丁类放大器的效率比丙类放大器的

还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的

器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,

使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是

戊类放大器。

我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必

须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能

量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特

点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,

决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带

宽度却很宽。例如,自20至 20000 Hz,高低频率之比达 1000倍。因此它们都

是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百

kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台

(535-1605 kHz的频段范围)的频带宽度为 10 kHz,如中心频率取为 1000 kHz,

则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,

高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这

两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或

乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情

况可工作于乙类)。近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带

高频功率放大器,它不采用选频网络作为负载回路,而是以频率响应很宽的传输

线作负载。这样,它可以在很宽的范围内变换工作频率,而不必重新调谐。

综上所述可见,高频功率放大器与低频功率放大器的共同之点是要求输出功率

大,效率高;它们的不同之点则是二者的工作频率与相对频宽不同,因而负载网络

和工作状态也不同。

高频功率放大器的主要技术指标有:输出功率、效率、功率增益、带宽和谐波

抑制度(或信号失真度)等。这几项指标要求是互相矛盾的,在设计放大器时应

根据具体要求,突出一些指标,兼顾其他一些指标。例如实际中有些电路,防止干

扰是主要矛盾,对谐波抑制度要求较高,而对带宽要求可适当降低等。

功率放大器的效率是一个突出的问题,其效率的高低与放大器的工作状态有直接

的关系。放大器的工作状态可分为甲类、乙类和丙类等。为了提高放大器的工作效率,

它通常工作在乙类、丙类,即晶体管工作延伸到非线性区域。但这些工作状态下的

放大器的输出电流与输出电压间存在很严重的非线性失真。低频功率放大器因其信号

的频率覆盖系数大,不能采用谐振回路作负载,因此一般工作在甲类状态;采用推挽

电路时可以工作在乙类。高频功率放大器因其信号的频率覆盖系数小,可以采用谐

振回路作负载,故通常工作在丙类,通过谐振回路的选频功能,可以滤除放大器集

电极电流中的谐波成分,选出基波分量从而基本消除了非线性失真。所以,高频功

率放大器具有比低频功率放大器更高的效率。

高频功率放大器因工作于大信号的非线性状态,不能用线性等效电路分析,

工程上普遍采用解析近似分析方法——折线法来分析其工作原理和工作状态。

这种分析方法的物理概念清楚,分析工作状态方便,但计算准确度较低。

以上讨论的各类高频功率放大器中,窄带高频功率放大器:用于提供足够强的以

载频为中心的窄带信号功率,或放大窄带已调信号或实现倍频的功能,通常工作

于乙类、丙类状态。宽带高频功率放大器:用于对某些载波信号频率变化范围大得

短波,超短波电台的中间各级放大级,以免对不同fc的繁琐调谐。通常工作于甲类状态。

主要是利用三极管的电流放大原理进行工作的,简单一点讲,一个三极管有基极b、集电极c、发射极e

当基极b的电流发生很小变化时,那么从集电极c流向发射e的电流就会发生很大变化,这个集电极流向发射极的电流除以基极的电流就叫做放大系数、或放大倍数。根据这个原理,如果一个想要放大功率,只要把将要被放大的信号放在基极,那么就会在集电极和发射极产生一个放大的信号,当然,放大电路并没有这么简单,我只是讲了一个原理,本人对电子方面学的也不好。希望对你有所帮助。

 
友情链接
鄂ICP备19019357号-22