电风扇五线电机电路图

核心提示电风扇五线电机电路图示意图从上图可以看出,此电路一共可以分为三大部分,最左边的220v交流电路,中间的摇摆电路,最右边的风机电路。电风扇电机是单相交流电机,它的内部有两个绕组,一个叫运行绕组(也称主绕组),另一个成为

            电风扇五线电机电路图示意图

从上图可以看出,此电路一共可以分为三大部分,最左边的220v交流电路,中间的摇摆电路,最右边的风机电路。电风扇电机是单相交流电机,它的内部有两个绕组,一个叫运行绕组(也称主绕组),另一个成为启动绕组(也成为副绕组)。启动电路由分相组成,使主副绕组在空间上相隔90°电角度。调速电路是串联一个电抗器调速开关组成,通过调电抗大小,来改变电机的电压实现调速。

三相电动机的启动,自锁,停止的原理图是怎样的

软启动器工作原理

      

软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如三相全控桥式整流电路,主电路图见图1。使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。

2 软启动器的选用 

(1) 选型:目前市场上常见的软启动器有旁路型、无旁路型、节能型等。

根据负载性质选择不同型号的软启动器。 

旁路型:在电动机达到额定转数时,用旁路接触器取代已完成任务的软启动器,降低晶闸管的热损耗,提高其工作效率。也可以用一台软启动器去启动多台电动机。 

无旁路型:晶闸管处于全导通状态,电动机工作于全压方式,忽略电压谐波分量,经常用于短时重复工作的电动机。 

节能型:当电动机负荷较轻时,软启动器自动降低施加于电动机定子上的电压,减少电动机电流励磁分量,提高电动机功率因数。 

(2) 选规格:根据电动机的标称功率,电流负载性质选择启动器,一般软启动器容量稍大于电动机工作电流,还应考虑保护功能是否完备,例如:缺相保护、短路保护、过载保护、逆序保护、过压保护、欠压保护等。 

3 Alt48软启动器的特点 

Alt48软启动器启动时采用专利技术的转矩控制。转矩斜坡上升更快速,损耗更低。具有电动机和软启动器综合保护功能,能全时连续检测电机电流,提供电机可靠和完整保护,这种保护功能在启动结束旁路后仍能起作用,这是其它软启动器都不具备的。 

Alt48在保持加速力矩的同时,实时计算定子和转子的功率。在整个加速周期连续计算电机功率因数和定子损耗,通过检测电压和电流来计算功率因数,并扣除定子损耗,得到实际的转子功率和电机力矩。 

4 Alt48软启动器的应用 

设计采用一拖二方案,即一台软启动器带两台水泵,可以依次启动,停止两台水泵。一拖二方案主要特点是节约一台软启动器,减少了投资,充分体现了方案的经济性,实用性。 

(1) 启动过程:首先选择一台电动机在软启动器拖动下按所选定的启动方式逐渐提升输出电压,达到工频电压后,旁路接触器接通。然后,软启动器从该回路中切除,去启动下一台电机。 

(2) 停止过程:先启动软启动器与旁路接触器并联运行,然后切除旁路,最后软启动器按所选定的停车方式逐渐降低输出电压直到停止。 

5 应用效果 

通过一年的运行,表明该装置可靠性高,性能完善,能满足生产要求。主要体现在以下几点: 

(1) 使用软启动器后,启动电流明显降低,减少配电容量与增容投资。 (2) 软启动器实现平稳启动,对水泵及管道无冲击,提高供电可靠性和供水可靠性。 

(3) 采用软停车方式减少对机械的冲击,防止水锤效应,延长水泵及其相关设备的使用寿命。 

(4) 多种启动模式及保护功能融于一体,防止事故的产生。 

     

流电机起动一般分为全压起动、降压起动和变频起动。大电机起动会产生超过10%的线路电压降,易引起其它电气设备工作不正常,而且长时间的5~8倍的起动电流有可能造成变压器过负荷跳闸。    

按照规定,全压起动的鼠笼型电机的容量不大于变压器容量的20%~30%。因此,按全压起动选择变压器容量,可能造成容量偏大。100kW以上交流鼠笼式电机一般不允许采用全压起动。变频起动可以同时改变电压和频率,保持V/F不变。既能降压,又能保持一定的起动力矩,是目前最好的起动设备,但投资太大。  

传统上交流电机的起动采用降压起动,如自耦变压器、星/三角起动器、串接起动电阻等,其原理是降低电机起动电压,减少对电网冲击。这些传统的起动方法均存在一定的缺陷:由于存在主回路电压切换,会对电机及机械设备产生冲击,降低设备使用寿命;主回路耗能元件(如起动电阻)增加能耗,设备体积较大;降低电压的同时,起动力矩相应减少;一旦元器件选定后便无法调整起动力矩。一种采用微处理器控制的由晶闸管元件组成的“软起动器”能很好地克服上述缺点。

电机星-三角形降压启动电路图如何画

电路图:

1、启动:合上三相隔离开关QS,按起动按钮SB2,按触器KM的吸引线圈得电,3对常开主触点闭合,将电动机M接入电源,电动机开始起动。同时,与SB2并联的KM的常开辅助触点闭合,即使松手断开SB2,吸引线圈KM通过其辅助触点可以继续保持通电,维持吸合状态。

2、自锁:由于KM的自锁作用,当松开SB2后,电动机M仍能继续起动,最后达到稳定运转。

3、停止:按停止按钮SB1,接触器KM的线圈失电,其主触点和辅助触点均断开,电动机脱离电源,停止运转。

FR热过载继电器,热过载继电器的常闭点和接触器的线圈是串联的。如果电机过载这个常闭点会断开用来保护电机,但是热继一般默认的自动复位,在没有人照看的情况下如果电机过载或者异常热继会断开,但是里面的热元件冷却以后又马上闭合。

如果是自锁电路热继常闭点复位电机也不会工作,但是第二个电路里的电机会立马运转,如果是电机异常跳的热继再次运转有可能会烧坏电机。

扩展资料:

三相电机两种接法

第一-种为星形(Y)接法,电机内部三相定子绕组的首端或尾端联接,另一端三相分别接入U、V、W三相交流电运行,适用于3KW以下的三相异步感应式电动机。

第二种为三角形(△)接法, 将三相定子绕组的首尾对应联接,第一绕组的首端与第三绕组的尾端联接视为U相,第二绕组的首端与第一绕组的尾端相连视为V相,第三绕组的首端与第二绕组的尾端相连视为W相,分别接入三相交流电源运行,适用于4KW及以上的三相异步咸应式电动机。

求电机延时启动和延时停止电路图

电动机星三角启动是异步电动机最常见的一种启动方式 因为异步电动机在启动过程中起动电流较大,所以容量大的电动机可以采用“星一三角形换接启动”。这是一种简单的降压启动方式,在启动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击。这样的启动方式称为星三角减压启动,简称为星三角启动(Y-Δ起动)。

采用星三角启动时,启动电流只是原来按三角形接法直接起动时的1/3。如果直接起动时的起动电流以6~7Ie计,则在星三角起动时,起动电流才2~23倍。同时启动电压也只是为原来三角形接法直接启动时的根号三分之一。当负载对电动机启动力矩无严格要求又要限制电动机启动电流且电机满足380V/Δ接线条件才能采用星三角启动方法。

星三角启动原理图2

这种Y-Δ(星三角)起动方法,目的是降低起动电流,减小对电网及电气设备的危害,这个方法只适合于几十千瓦的小型电机,如大型电机采用的是自藕变压器起动方式。

试教板上起动机的电路原理图极其启动过程

容量较大的电动机。通常采用降压启动方式。降压启动的方式很多,有星三角启动,自耦降压启动,串联电抗器降压启动,延边三角形启动等。 本文介绍电动机的星三角(Y一△)启动方式。所谓Y一△启动,是指启动时电动机绕组接成星形,启动结束进入运行状态后,电动机绕组接成三角形。在启动时。电机定子绕组因是星形接法,所以每相绕组所受的电压降低到运行电压的1/ 、(约577%),启动电流为直接启动时的1/3,启动转矩也同时减小到直接启动的1/3。所以这种启动方式只能工作在空载或轻载启动的场合。例如,轴流风机启动时应将出风阀门打开,离心水泵应将出水阀门关闭,使设备处于轻载状态。图1是电动机Y-△启动的一次电路图,U1-U2、V2-V2、Wl-W2是电动机M的三相绕组。如果将U2、V2和W2在接线盒内短接,则电动机被接成星形;如果将U1和W2、V1和U2、W1和V2分别短接,则电动机被接成三角形。实现电动机的Y-△启动的二次控制电路见图2。现在分析Y-△启动电路的工作过程。按下启动按钮SB2,接触器KM3和时间继电器的线圈得电,KM3的主触点闭合,将电动机的三相绕组接成星形;KM3的辅助触点(常开)KM3-3同时闭合使接触器KM2动作,电动机进入星形启动状态,KM2的辅助触点KM2-1闭合,使电路维持在启动状态。待电动机转速达到一定程度时,时间继电器KT延时时间到。其延时触点(常闭)断开,接触器KM3线圈失电.主触点断开,辅助触点(常例)KM3-1闭台。接触器KMl得电工作.电动机进入三角运行状态。这里时间继电器的延时时间应通过试验调整在5~15秒之间。按下停止按钮,或电动机出现异常过电流使热继电器FH动作时,电动机均会停止运行。电动机停运时绿灯HG点亮;启动过程中黄灯HY点亮;运行过程则红灯HR点亮。电流表PA和电压表PV用于电动机运行参数的测量。热继电器的调整.应根据负载轻重和运行电流的大小,在热态(热继电器接入电路,并经过启动电流的预热)实地进行。观察电流表的读数.按照读数的12倍整定其电流调整钮。电动机出现12倍的异常电流时.热继电器会在20分钟内动作。如果电动机运行电流是随负载不断变化的,则整定值可按较大电流值计算选取.但最大不能超过电动机额定电流的12倍。

三相异步电动机直接启动电路图

起动机的作用是启动发动机,启动机上的齿轮工作时和发动机曲轴相连的飞轮咬合,驱动飞轮,带动发动机,起动机的工作原理为汽车起动机的控制装置包括电磁开关、起动继电器和点火起动开关灯部件,其中电磁开关于起动机制作在一起。

起动机的过程是先点火开关通电到启动档,启动电路通电传递到继电器,继电器电路闭合,起动机通电运转,点火开关关闭启动档,启动电路断电传递到继电器,继电器电路断开,起动机停止工作。

扩展资料:

起动机分类

1、减速起动机

在起动机的电枢轴与驱动齿轮之间装有齿轮减速器的起动机,称为减速起动机。

串励式直流电动机的功率与电动机的转矩和转速成正比。可见,当提高发动机转速的同时降低其转矩时,可以保持起动机功率不变。因此,当采用高速、低扭矩的串励式直流电动机作为起动机时,在功率相同的情况下,可以使起动机的体积和重量大大减小。

但是,起动机的转矩过低,不能满足起动发动机的要求。为此,在起动机中采用高速、低转矩的直流电动机时,在电动机的电枢轴和驱动齿轮之间安装齿轮减速器,可以降低电动机转速的同时提高其转矩。

减速起动机的齿轮减速器有外啮合式、内啮合式和行星齿轮式等三种不同形式。

2、永磁起动机

以永磁材料作为磁极的起动机,称为永磁起动机。它取消了传统起动机中的励磁绕组和磁极铁心,使起动机的结构简化,体积和质量大大减小,可靠性提高,并节省了金属材料。

3、永磁减速起动机

采用高速、低转矩的永磁电动机,并在驱动齿轮与电枢轴之间安装齿轮减速器的起动机,称为永磁减速起动机。永磁减速起动机的体积和质量可以进一步减小,目前已得到广泛应用。

参考资料:

-起动机

1、三相异步电动机的Y-△降压启动控制

将三相异步电动机的Y-△降压启动的继电接触器控制改造为PLC控制系统

(1)确定I/O信号、画PLC的外部接线图

(a)主电路。

(b)PLC的I/O接线图。

电动机的Y-△降压启动的接线图。

(2)设计三相异步电动机的Y-△降压启动梯形图。

电动机的Y-△降压启动控制的梯形图

2三相异步电动机的串自耦变压器降压启动控制

将串自耦变压器降压启动的继电接触器控制改造为PLC控制系统:

(1)确定I/O信号、画PLC的外部接线图

PLC的输入信号:启动按钮SB1,停止按钮SB2,热继电器常开触点FR。

PLC的输出信号:运行接触器KM2、串接自耦变压器接触器KM1。

电动机的自耦变压器降压启动的接线图

(2)设计三相异步电动机的串自耦变压器降压启动梯形图。

三相异步电动机的串自耦变压器降压启动控制梯形图

二、三相绕线式异步电动机的控制

1三相绕线式异步电动机串电阻启动控制

将绕线式异步电动机串电阻启动的继电接触器控制线路改造为PLC控制系统:

PLC的输入信号:启动按钮SB1,停止按钮SB2,热继电器常开触点FR。

PLC的输出信号:电源接触器KM、短接R1接触器KM1、短接R2接触器KM

2三相绕线式异步电动机串频敏变阻器启动电路。

(a)主电路

(b)PLC的I/O接线图

(2)设计三相绕线式异步电动机串频敏变阻器启动梯形图

三相绕线式异步电动机串频敏变阻器启动梯形图

扩展资料:

三相异步电机的主要参数:

1、电机转矩

对称3相绕组通入对称3相电流,产生旋转磁场,磁场线切割转子绕组,根据电磁感应原理,转子绕组中产生e和i,转子绕组在磁场中受到电磁力的作用,即产生电磁转矩,使转子旋转起来,转子输出机械能量,带动机械负载旋转起来。

在交流电机中,当定子绕组通过交流电流时,建立了电枢磁动势,它对电机能量转换和运行性能都有很大影响。所以三相交流绕组通入三相交流产生脉振磁动势,该磁动势可分解为两个幅值相等、转速相反的旋转磁动势和,从而在气隙中建立正转和反转磁场和。

这两个旋转磁场切割转子导体,并分别在转子导体中产生感应电动势和感应电流。

该电流与磁场相互作用产生正、反电磁转矩。正向电磁转矩企图使转子正转;反向电磁转矩企图使转子反转。这两个转矩叠加起来就是推动电动机转动的合成转矩。

2、电机转速

在电机定子中通入3相交流电,使其产生旋转磁场,转速为n0。不同的磁极对数p,在相同频率f=50Hz的交流电作用下,会产生不同的同步转速n0,n0=60f/p。

电机转子的转速小于旋转磁场的转速,它和感应电机基本上是相同的。s=(ns-n)/ns。s为转差率,

ns为磁场转速,n为转子转速。

参考资料:

:三相异步电机

 
友情链接
鄂ICP备19019357号-22