三相交流电压,电流测量实验报告心得

核心提示1 在三角形负载的回路中,线电压等1732的相电压;线电流等于相电流。2 在星形负载的回路中,线电流等1732的相电流;线电压等于相电压。3 平衡对称的三相负载,三相四线的零线上,电流为零。跪求proteL实验报告的实验总结及心得体会,满意

1 在三角形负载的回路中,线电压等1732的相电压;线电流等于相电流。

2 在星形负载的回路中,线电流等1732的相电流;线电压等于相电压。

3 平衡对称的三相负载,三相四线的零线上,电流为零。

跪求proteL实验报告的实验总结及心得体会,满意了保证加分。

一.实验目的

1.对晶体三极管(3DG6、9013)、场效应管(3DJ6G)进行实物识别,了解它们的命名方法和主要技术指标。

2.学习用数字万用表、模拟万用表对三极管进行测试的方法。

3.用图3-10提供的电路,对三极管的β值进行测试。

4.学习共射、共集电极()、共基极放大电路静态工作点的测量与调整,以及参数选取方法,研究静态工作点对放大电路动态性能的影响。

5.学习放大电路动态参数(电压放大倍数、输入电阻、输出电阻、最大不失真输出电压)的测量方法。

6 调节CE电路相关参数,用示波器观测输出波形,对饱和失真和截止失真的情况进行研究。

7.用Multisim软件完成对共射极、共集电极、共基极放大电路性能的分析,学习放大电路静态工作点的测试及调整方法,观察测定电路参数变化对放大电路的静态工作点、电压放大倍数及输出电压波形的影响。加深对共射极、共集电极、共基极基本放大电路放大特性的理解。

二.知识要点

1.半导体三极管

半导体三极管是组成放大电路的核心器件,是集成电路的组成元件,在电路中主要用于电流放大、开关控制或与其他元器件组成特殊电路等。

半导体三极管的种类较多,按制造材料不同有硅管、锗管、砷化镓管、磷化镓管等;按极性不同有NPN型和PNP型;按工作频率不同有低频管、高频管及超高频管等;按用途不同有普通管、高频管、开关管、复合管等。其功耗大于1W的属于大功率管,小于1W的属于小功率管。

半导体三极管的参数主要有电流放大倍数β、极间反向电流ICEO、极限参数(如最高工作电压VCEM、集电极最大工作电流ICM、最高结温TjM、集电极最大功耗PCM)以及频率特性参数等。有关三极管命名、类型以及参数等可查阅相关器件手册。

下面给出几种常用三极管的参数举例如表3-01所示:

表3-01 几种常用三极管的参数

参数 PCM(mW) ICM(mA) VBRCBO(V) ICBO(μA hFE fT(MHz) 极性

3DG100D 100 20 40 1 4 001 NPN

3DG200A 100 20 15 01 25~270 001 NPN

CS9013H 400 500 25 05 144 150 NPN

CS9012H 600 500 25 05 144 150 PNP

参数 VP(V) IDSS gm(mA/V) PDM(mW) rGS(Ω) fM

3DJ6G -9 3~65 1 100 108 30 N沟道

2.半导体三极管的识别与检测

半导体三极管的类型有NPN型和PNP型两种。可根据管子外壳标注的型号来判别是NPN型,还是PNP型。在半导体三极管型号命名中,第二部分字母A、C表示PNP型管;B、D表示NPN型管;而A、B表示锗材料;C、D表示硅材料。另外,目前市场上广泛使用的9011~9018系列高频小功率9012、9015为PNP型,其余为NPN型。半导体三极管的型号和命名方法,与半导体二极管的型号及命名方法相同,详见康华光第四版P44页附录或者参考有关手册。

(1)三极管的电极和类型判别

1) 直观辨识法。

半导体三极管有基极(B)、集电极(C)和发射极(E)三个电极,如图3-11所示,常用三极管电极排列有E-B-C、

B-C-E、C-B-E、E-C-B等多种形式。

2) 特征辨识法。如图3-01所示,有些三极管用结构特征标识来表示某一电极。如高频小功率管3DGl2、3DG6的外壳有一小凸起标识,该凸起标识旁引脚为发射极;金属封装低频大功率管3DD301、3AD6C的外壳为集电极等。

图3-11 三极管结构特征标识极性

3) 万用表欧姆档判别法

如图3-12所示,选用指针式万用表欧姆档R×lkΩ档。首先判定基极b方法:用万用表黑表笔碰触某一极,再用红表笔依次碰触另外两个电极,并测得两电极间阻值。若两次测得电阻均很小(为PN结正向电阻值),则

黑表笔对应为基极且此管为NPN型;或

者两次测得电阻值均很大(为PN结反向

电阻值),但交换表笔后再用黑笔去碰触

另两极,也测量两次,若两次阻值也很小,

则原黑表笔对应为管子基极,且此管为

PNP型。注意:指针式万用表欧姆档时,

黑表笔则为正极,红表笔为负极;这与 (a) (b)

数字式万用表不同。 图3-12 万用表欧姆档判别法

其次,判别集电极和发射极。其基本原理是把三极管接成基本放大电路,利用测量管子的电流放大倍数值β的大小,来判定集电极和发射极。

以NPN管为例说明,如图3-12b所示,基极确定后,不管基极,用万用表两表笔分别接另两电极,用100kΩ的电阻一端接基极,电阻的另一端接万用表黑表笔,若表针偏转角度较大,则黑表笔对应为集电极,红表笔对应为发射极。也可用手捏住基极与黑表笔(但不能使两者相碰),以人体电阻代替l00kΩ电阻的作用(对于PNP型,手捏红表笔与基极)。

上面这种方法,实质上是把三极管接成了正向偏置状态,若极性正确,则集电极有较大电流。

(2)硅管、锗管的判别 根据硅材料PN结正向电阻较锗材料大的特点,可用万用表欧姆R×1kΩ档测定,若测得PN结正向阻值约为3~l0kΩ,则为硅材料管;若测得正向阻值约为50~1kΩ,则为锗材料管。或测量发射结(集电结)反向电阻值,若测得反向阻值约为500kΩ,则为硅材料管;若测得反向阻值约为100kΩ,则为锗材料管。

3.三极管场效应管放大电路

共射极放大电路既有电流放大作用,又有电压放大作用,故常用于小信号的放大。改变电路的静态工作点,可调节电路的电压放大倍数。而电路工作点的调整,主要是通过改变电路参数(Rb、Rc)来实现。(负载电阻RL的变化不影响电路的静态工作点,只改变电路的电压放大倍数。)该电路信号从基极输入,从集电极输出。输入电阻与相同材料的二极管正向偏置电阻相当,输出电阻较高,适用于多级放大电路的中间级。

共集电极放大电路信号由晶体管基极输入,发射极输出。由于其电压放大倍数Av接近于l,输出电压具有随输入电压变化的特性,故又称为射极跟随器。该电路输入电阻高,输出电阻低,适用于多级放大电路的输入级、输出级,还可以作为中间阻抗变换级。

共基极放大电路信号由晶体管发射极输入,集电极输出。其电流放大倍数Ai接近于1但恒小于1,(又叫电流跟随器),电压放大倍数Av共射极放大器相同,且输入电压与输出电压同相。其输入电阻低,只有共射放大电路的l/(1+β)倍,输出电阻高,输入端与输出端之间没有密勒电容,电路频率特性好,适用于宽带放大电路。

下面以图3-13基本共射放大电路为例进行说明。

(1)放大电路静态工作点的测量和调试

由于电子元件性能的分散性很大,在

制作晶体三极管放大电路时,离不开测量

和调试技术。在完成设计和装配之后,还

必须测量和调试放大电路的静态工作点及

各项指标。一个优质的放大电路,一个最

终的产品,一定是理论计算与实验调试相

结合的产物。因此,除了熟悉放大电路的

理论设计外,还必须掌握必要的测量和调

试技术。

放大电路的测量和调试主要包括放大

电路静态工作点的测量和调试、放大电路 图3-13 基本共射放大电路(固定偏置式)

各项动态指标的测量和调试、消除放大电路的干扰和自激等。在进行测试之前,务必先检查

三极管的好坏,并确定具体的β值。

1)静态工作点Q的测量

放大电路静态工作点的测量是在不加输入信号(即VI=0)的情况下进行的。

静态工作点的测量是指三极管直流电压VBEQ、VCEQ和电流I CQ的测量。应选用合适的直流电压表和直流毫安表,分别测量三极管直流电压VBEQ、VCEQ和I CQ。为了避免更改接线,采用电压测量法来换算电流。例如,只要测出实际的Rb、RC的阻值,即可由 ; ;(或 )

提示:在测量各电极的电位时最好选用内阻较高的万用表,否则必须考虑到万用表内阻对被测电路的影响。

2)静态工作点的调整

测量静态工作点I CQ和VCEQ的目的是了解静态工作点的设置是否合适。若测出VCEQ <05 V,则说明三极管已进入饱和状态;如果VCE≈VCC,则说明三极管工作在截止状态。对于一个放大双极性信号(交流信号)的放大电路来说,这两种情况下的静态偏置都不能使电路正常工作,需要对静态工作点进行调整。如果是出现测量值与选定的静态工作点不一致,也需要对静态工作点进行调整。否则,放大后的信号将出现严重的非线性失真和错误。

通常,VCC 、Rc都已事先选定,当需要调整工作点时,一般都是通过改变偏置电阻Rb来实现。应当注意的是.如果偏置电阻Rb选用的是电位器,在调整静态工作点时,若不慎将电位器阻值调整过小(或过大),则会使IC过大而烧坏管子,所以应该用一只固定电阻与电位器串联使用。图3-18电路中是用Rb1和电位器Rb2串联构成Rb。

2.放大电路的动态指标测试

放大电路的主要指标有电压放大倍数Av、输入电阻Ri、输出电阻Ro,以及最大不失真输出电压VO(max)等。在进行动态测试时,各电子仪器与被测电路的连接如图3-14所示。实验电路则如后面的图3-18所示。

图3-14 实验电路与各测试仪器的连接

提示:为防止干扰,各仪器的公共接地端与被测电路的公共接地端应连在一起。同时,信号源、毫伏表和示波器的信号线通常都采用屏蔽线,而直流电源VCC的正、负电源线可只需普通导线即可。

(1)电压放大倍数Av的测量

输入信号选用1KHz、约5 mV的正弦交流信号,用示波器观察放大电路输出电压VO的波形,在输出信号没有明显失真的情况下,用毫伏表测得VO和VI,于是可得 。

(2)最大不失真输出电压的测量

放大电路的线性工作范围与三极管的静态工作点位置有关。当I CQ偏小时,放大电路容易产生截止失真;而I CQ偏大时,则容易产生饱和失真。需要指出的是,当I CQ增大时,VO波形的饱和失真比较明显,

波形下端出现“削底”,如

图3-15a所示。而当I CQ

减小时,VO波形将出现截

止失真,如图3-15b所

示,波形上端出现“削顶”。 (a) (b) (c)

当放大电路的静态工作点调 图3-15 静态工作点对输出电压Vo波形的影响

整在三极管线性工作范围的 (a) VO易出现饱和失真 (b)VO易出现截止失真

中心位置时,若输入信号 (c) VO波形上下半周同时出现失真

VI过大,VO的波形也会出现失真,上下同时出现“削顶”和“削顶”失真,如图3-15(c)所示。此时,用毫伏表测出VO的幅度,即为放大电路的最大不失真输出电压Vo(max)。

(3)输入电阻Ri的测量

输入电阻的测量电路如图3-16所示。

图3-16 测量输入电阻的电路

放大电路的输入电阻:

在放大电路的输入端串联一只阻值已知的电阻RS(可取510Ω),见图3-16所示,通过毫伏表分别测出RS两端对地电压,求得RS上的压降(Vs-Vi),则:

所以有

通过测量VS和Vi来间接地求出RS上的压降,是因为RS两端没有电路的公共接地点。若用一端接地的毫伏表测量,会引入干扰信号,以致造成测量误差。

(4)输出电阻的测量

放大电路的输出端可看成有源二端网络。如图3-17所示。

图3-17 测量输出电阻的电路

用毫伏表测出不接RL时的空载电压Vo’和接负载RL后的输出电压Vo,即可间接地推算RO的大小: 。

(5)放大电路频率特性的测量

放大电路频率特性是指放大电路的电压放大倍数Av,与输入信号频率之间的关系。Av随输入信号频率变化下降到0707Av。时所对应的频率定义为下限频率 和上限频率 ,通频带为 。

上、下限频率可用以下方法测量:先调节输入信号Vi使Vi频率为1kHz;调节Vi幅度,使输出电压Vo幅度为1V。保持Vi幅度不变,增大信号Vi的频率,Vo幅度随着下降,当Vo下降到0707 V时,对应的信号额率为上限频率 ;保持Vi幅度不变,降低Vi频率,同样使Vo幅度下降到0707 V时,

对应的信号频率为下限频率 。

(6)观察截止失真、饱和失

真两种失真现象

测量电路如图3-18所示,

在ICQ=30 mA,RL=∞情况下,

增大输入信号,使输出电压保

持没有失真,然后调节电位器

Rb2阻值,改变电路的静态工

作点,使电路分别产生较为明

显的截止失真与饱和失真,测

出产生失真后相应的集电极静

态电流。做好相应的实验记录。 图3-18 共射放大电路举例

图3-19 共射放大电路对应的三个仿真电路图

图3-20 共集电极放大电路举例

三.实验内容

1.查阅手册并测试晶体三极管(3DG100D、CS9013)、场效应管(3DJ6G)的参数,记录所查和所测数据。

2.用晶体三极管3DG100D或CS9013组成如图3-21所示单管共射极放大电路,通过改变电位器R2,使得VCE为4V,测量此时VCEQ、VBEQ、Rb的值,计算放大电路的静态工作点Q对应的三个参数值。

3.在下列两种情况下,测

量放大电路的电压放大倍数和

最大Av不失真输出电压VOMAX。

(1)RL=R4=∞(开路)②RL=R4=

10kΩ。

建议:最初使用1KHz、5mV的正

弦信号作为输入信号进行测试;

然后改变输入信号的幅值,使用

双踪显示方式同时显示VI与

VO,进行监视,尽量选择较大幅

度的正弦信号作为放大器的VI,

在保证VO波形不失真的条件下 图3-21 单管共射极放大电路

进行测量。(若VO波形失真,所测动态参数就毫无意义)。

表3-09 静态数据记录表

实测值 实测计算值

VCE(V) VBE(V) Rb(KΩ) VCEQ(V) IBQ(μA) ICQ(mA)

表3-10 测AV的记录表

实测值 理论估算值 实测计算值

Vi(mV) Vo(mV) AV AV

4. 观察饱和失真和截止失真,并测出相应的集电极静态电流。

5. 测量放大电路的输入电阻Ri和输出电阻Ro。

6.按照图3-10设计BJT的β测试电路,确定电路中所有元器件和输入电压的参数值,并对测试结果进行比较和误差分析。

图3-10 BJT的β值测试电路图

7.测量图3-18放大电路带负载时的上限频率 和下限频率 。

8.实验电路如图3-20 所示,要求仿真并实物实现电路,计算并实测电路的输入电阻和输出电阻。

四.思考题

1.Rb为什么要由一个电位器和一个固定电阻串联组成?

2.电解电容两端的静态电压方向与它的极性应该有何关系?

3.如果仪器和实验线路不共地会出现什么情况?通过实验说明。

五.实验报告

1.按照实验准备的要求完成设计作业一份,并估算放大电路的性能指标。

2.记录实验中测得的有关静态工作点和电路的Au、Vo(max)、Ri和Ro的数据。

3.认真记录和整理测试数据,按要求填入表格并画出输入、输出对应的波形图。

4.对测试结果进行理论分析,找出产生误差的原因。

5.详细记录组装、调试过程中发生的故障或问题,进行故障分析,并说明排除故障的过程和方法。

6.写出对本次实验的心得体会,以及改进实验方法的建议。

提示:

1.组装电路时,不要弯曲三极管的三个电极,应当将它们垂直地插入面包板孔内。

2.先分别组装好电路,经检查无误后,再打开电源开关。

3.测试静态工作点时,应关闭信号源。

4.本实验接点多,元器件多,组装时一定要确保接触良好,否则,会因接触不良,出现错误或造成电路故障。

学习protel软件的体会

摘 要:介绍了Protel 99 SE的系统结构、主要特色以及在电路设计中的应用,指出了设计中出现的问题,并给出了具体的解决方法。

关键词:Protel 99 SE;电路原理图;印刷电路板;电路设计

2007年8月,在江苏省教育厅统一组织的“四新培训”活动中,我参加了由东南大学举办的“电子线路CAD——protel软件应用”培训。

作为初学者,我通过为期8天的学习,比较全面地了解和掌握了绘制、编辑电路原理图和印制电路图的方法和技巧,并能处理一些常见问题。在对protel软件的学习中,我有不少心得体会,下面我就谈一下我的学习体会。

一、简要介绍Protel软件。Protel是protel公司在80年代末推出的一款功能强大的电路CAD软件,其所设计的电子电路产品范围,涵盖了从小型的电子产品,一直到复杂的电子计算机,是目前国内电子行业使用最广泛的电子电路设计软件。我所学习的Protel 99 SE 是Protel公司推出的最新版本,应用于电路原理图设计、电路板设计等,他基于Windows环境,功能强大,人机界面友好,能让人们在具有最完整的功能环境下,提升设计上的品质和效率。

二、Protel99SE软件的组成。Protel99SE由五大系统构成。

1.原理图设计系统---原理图设计系统是用于原理图设计的Advanced Schematic

系统。这部分包括用于设计原理图的原理图编辑器Sch以及用于修改、生成零件的零件库编辑器SCHLib。

2.印刷电路板设计系统---印刷电路板设计系统是用于电路板设计的 Advanced PCB。这部分包括用于设计电路板的电路板编辑器PCB以及用于修改、生成零件封装的零件封装编辑器PCBLib。

3.信号模拟仿真系统---信号模拟仿真系统是用于原理图上进行信号模拟仿真的SPICE 3f5系统。

4. 可编程逻辑设计系统---可编程逻辑设计系统是基于CUPL的集成于原理图设计系统的PLD设计系统。

5.Protel99SE内置编辑器---这部分包括用于显示、编辑文本的文本编辑器Text和用于显示、编辑电子表格的电子表格编辑器Spread。

三、Protel99SE的主要特色。

1.Protel99SE系统针对Windows NT4/9X作了纯32位代码优化,使得Protel99SE设计系统运行稳定而且高效。

2 SmartTool(智能工具)技术将所有的设计工具集成在单一的设计环境中;SmartDoc(智能文档)技术将所有的设计数据文件储存在单一的设计数据库中,用设计管理器来统一管理;SmartTeam(智能工作组)技术能让多个设计者通过网络安全地对同一设计进行单独设计,再通过工作组管理功能将各个部分集成到设计管理器中。

3. 对印刷电路板设计时的自动布局采用两种不同的布局方式,即组群式和基于统计方式;新增加了自动布局规则设计功能;增强的交互式布局和布线模式。

4.电路板信号完整性规则设计和检查功能可以检测出潜在的阻抗匹配、信号传播延时和信号过载等问题; 广泛的集成向导功能引导设计人员完成复杂的工作。

5.原理图到印刷电路板的更新功能加强了Sch和PCB之间的联系; 可以用标准或者用户自定义模板来生成新的原理图文件;集成的原理图设计系统收集了超过60000个元器件。

6.通过完整的SPICE 3f5仿真系统可以在原理图中直接进行信号仿真;可以选择超过60种工业标准计算机电路板布线模板或者用户可以自己生成一个电路板模板。

四、用Protel99SE进行电路设计的基本步骤。

1.设计电路原理图

电路原理图的设计是整个电路设计的基础,因此电路原理图要设计好,以免影响后面

的设计工作。电路原理图的设计一般有如下步骤:

(1)设置原理图设计环境;(2)放置元件;(3)原理图布线;(4)编辑和调整;(5)检查原理图;(6)生成网络表。

2.设计印刷电路板

印刷电路板设计是从电路原理图变成一个具体产品的必经之路,因此,印刷电路板设计是电路设计中最重要、最关键的一步。通常,印刷电路板设计的具体步骤如下:

(1)规划电路板;(2)设置参数;(3)装入网络表;(4)元器件布局;(5)自动布线;(6)手工调整。

五、实例

下面以两级放大电路的设计来说明Protel 99 SE在电路设计中的应用。

设计要求:(1)使用单层电路板;(2)电源、地线铜膜线的宽度为127 mm;(3)一般布线的宽度为0635 mm 。

1. 设计电路原理图

原理图设计最基本的要求是正确性,其次是布局合理,最后是在正确性和布局合理的前

提下力求美观。根据以上所述的电路原理图设计步骤,两级放大器电路原理图设计过程如下:

(1) 启动原理图设计服务器

进入Protel 99 SE,创建一个数据库,执行菜单File/New命令,从框中选择原理图服务器(Schematic document)图标,双击该图标,建立原理图设计文档。双击文档图标,进入原理图设计服务器界面。

(2) 设置原理图设计环境

执行菜单Design/Options和Tool/Preferences,设置图纸大小、捕捉栅格、电气栅格等。

(3) 装入所需的元件库

在设计管理器中选择Browse SCH页面,在Browse区域中的下拉框中选择Library,然后单击ADD/Remove按钮,在弹出的窗口中寻找Protel 99 SE子目录,在该目录中选择Library\SCH路径,在元件库列表中选择所需的元件库,比如Miscellaneous devices�ddb,TI Databook库等,单击ADD按钮,即可把元件库增加到元件库管理器中。

(4)放置元件

根据实际电路的需要,到元件库中找出所需的元件,然后用元件管理器的Place按钮将元件放置在工作平面上,再根据元件之间的走线把元件调整好。

(5)原理图布线

利用Protel 99 SE提供的各种工具、指令进行布线,将工作平面上的器件用具有电气意义的导线、符号连接起来,构成一个完整的电路原理图。

(6)编辑和调整

利用Protel 99 SE 所提供的各种强大的功能对原理图进一步调整和修改,以保证原理图的美观和正确。同时对元件的编号、封装进行定义和设定等。

(7)检查原理图

使用Protel 99 SE 的电气规则,即执行菜单命令Tool/REC对画好的电路原理图进行电气规则检查。若有错误,根据错误情况进行改正。

(8) 生成网络表

网络表是电路原理图设计和印刷电路板设计之间的桥梁,执行菜单命令Design/Create Netlist可以生成具有元件名、元件封装、参数及元件之间连接关系的网络表。

经过以上的步骤,完成了两级放大电路原理图的设计。

两级放大电路原理图如下所示:

2.印刷电路板的设计

电路设计的最终目的是为了设计出电子产品,而电子产品的物理结构是通过印刷电路板来实现的。Protel 99 SE为设计者提供了一个完整的电路板设计环境,使电路设计更加方便有效。应用Protel 99 SE设计印刷电路板过程如下:

(1)启动印刷电路板设计服务器

执行菜单File/New命令,从框中选择PCB设计服务器(PCB document)图标,双击该图标,建立PCB设计文档。双击文档图标,进入PCB设计服务器界面。

(2)规划电路板

根据要设计的电路确定电路板的尺寸。选取Keep Out Layer复选框,执行菜单命令Place/Keepout/Track,绘制电路板的边框。执行菜单Design/Options,在“Signal Lager”中选择Bottom Lager,把电路板定义为单面板。

(3)设置参数

参数设置是电路板设计的非常重要的步骤,执行菜单命令Design/Rules,左键单击Routing按钮,根据设计要求,在规则类(Rules Classes)中设置参数。

选择Routing Layer,对布线工作层进行设置:左键单击Properties,在“布线工作层面设置”对话框的“Pule Attributes”选项中设置Tod Layer为“Not Used”、设置 Bottom Layer为“Any”。

选择Width Constraint,对地线线宽进行设置:左键单击Add按钮,进入线宽规则设置界面,首先在Rule Scope区域的Filter Kind选择框中选择Net,然后在Net下拉框中选择GND,再在Rule Attributes区域将Minimum width、Maximum width和Preferred三个输入框的线宽设置为127 mm;

电源线宽的设置:在Net下拉框中选择VCC,其他与地线线宽设置相同;

整板线宽设置:在Filter Kind选择框中选择Whole Board,然后将Minimum width,Maximum width和Preferred三个输入框的线宽设置为0635 mm。

(4)装入元件封装库

执行菜单命令Design/Add/Remove Library,在“添加/删除元件库” 对话框中选取所有元件所对应的元件封装库,例如:PCB Footprint,Transistor,General IC,International Rectifiers等。

(5)装入网络表

执行菜单Design/Load Nets命令,然后在弹出的窗口中单击Browse按钮,再在弹出的窗口中选择电路原理图设计生成的网络表文件(扩展名为Net),如果没有错误,单击Execute。若出现错误提示,必须更改错误。

(6)元器件布局

Protel 99 SE既可以进行自动布局也可以进行手工布局,执行菜单命令Tools/Auto Placement/Auto Placer可以自动布局。布局是布线关键性的一步,为了使布局更加合理,最好采用手工布局方式。

(7)自动布线

Protel 99 SE采用世界最先进的无网格、基于形状的对角线自动布线技术。执行菜单命令Auto Routing/All,并在弹出的窗口中单击Route all按钮,程序即对印刷电路板进行自动布线。只要设置有关参数,元件布局合理,自动布线的成功率几乎是100%。

(8)手工调整自动布线结束后,可能存在一些令人不满意的地方,可以手工调整,把电路板设计得尽善尽美。

(9) 打印输出印刷电路板图执行菜单命令File/Print/Preview,形成扩展名为PPC的文件,再执行菜单命令File/print Job,就可以打印输出印刷电路板图。

六、设计中的问题及解决方法

虽然Protel 99 SE功能强大,人机界面友好,但在设计过程中往往遇到一些问题。

1.生成的印刷电路板图与电路原理图不相符,有一些元件没有连上。这种情况时有发生,问题出在原理图上,原理图看上去是连上了,但画图不符合规范,导致未连接上。不规范的连线有:

①连线超过元器件的断点;

②连线的两部分有重复。

解决方法是在画原理图连线时,应尽量做到:

①在元件端点处连线;

②元器件连线尽量一线连通。

2.在印刷电路板设计中装入网络表时元器件不能完全调入。原因有:

①原理图中未定义元件的封装形式;

②印刷电路板封装的名称不存在,致使在封装库中找不到;

③封装可以找到,但元件的管脚名称与印刷电路板库中封装的管脚名称不一致。

解决方法:

①到网络表文档中查找未定义封装的元件,补上元件封装;

②确认印刷电路板元件封装库是否已调入,同时检查原理图中元件封装名称是否与印刷电路板元件封装库中的名称是否一致;

③将印刷电路板元件封装库中的元件修改成与原理图中定义的一致。如三极管的管脚名称在原理图中定义为1,2,3,而在印刷电路板封装库中焊盘序号定义为E,B,C,必须修改印刷电路板封装库中的三极管管脚名称,使他与原理图中定义的三极管管脚名称一致。

七、结语

随着电子工业的飞速发展,电路设计越来越复杂,手工设计越来越难以适应形势发展的需要,Protel 99 SE以其强大的功能、快捷实用的操作界面及良好的开放性,为设计者提供了现代电子设计手段,使设计者能快捷、准确地设计出满意的电路原理图和印刷电路板,不愧是从事电路设计的一个良好的工具。

 
友情链接
鄂ICP备19019357号-22