全桥逆变电路v的作用

核心提示四、学习逆变(DC-AC)电路和LLC的基本工作原理。全桥逆变电路包括单相全桥逆变电路和三相全桥逆变电路,逆变的主要功能是把直流电逆变成某一频率或可变频率的交流电供给负载。单相半桥逆变电路基本工作原理第一阶段,VT1基极脉冲信号Ub1为高电

四、学习逆变(DC-AC)电路和LLC的基本工作原理。

全桥逆变电路包括单相全桥逆变电路和三相全桥逆变电路,逆变的主要功能是把直流电逆变成某一频率或可变频率的交流电供给负载。

单相半桥逆变电路基本工作原理

第一阶段,VT1基极脉冲信号Ub1为高电平,VT2的Ub2为低电平,VT1导通、VT2关断,A点电压为Ud,由于B点电压为Ud/2,故R、L两端的电压Uo为Ud/2,VT1导通后有电流流过R、L,电流途径是:Ud+→VT1→L、R→B点→C2→Ud-,因为L对变化电流的阻碍作用,流过R、L的电流I0将慢慢增大。

 第二阶段,VT1的Ubl为低电平,VT2的Ub2为高电平,VT1关断,流过L的电流突然变小,L马上产生左正右负的电动势,该电动势通过VD2形成电流回路,电流途径是:L左正→R→C2→VD2→L右负→VD2→U-,该电流方向仍是由右往左,但电流随L上的电动势下降而减小,在t3时刻电流I0变为0。在t2~t3期间,由于L产生左正右负电动势,A点电压较B点电压低,即R、L两端的电压Uo极性发生了改变,变为左正右负,由于A点电压很低,虽然VT2的Ub2为高电平,VT2仍无法导通。

第三阶段,VT1基极脉冲信号Ub1仍为低电平,VT2的Ub2仍为高电平,由于此时L上的左正右负电动势已消失,VT2开始导通,有电流流过R、L,电流途径是:C2上正(C2相当于一个大小为Ud/2的电源)→R→L→VT2→C2下负,该电流与t1~t3期间的电流相反,由于L的阻碍作用,该电流慢慢增大。因为B点电压为Ud/2,A点电压为0(忽略VT2导通压降),故R、L两端的电压Uo大小为Ud/2,极性是左正右负。

第四阶段,VT1的Ub1为高电平,VT2的Ub2为低电平,VT2关断,流过L的电流突然变小,L马上产生左负右正的电动势,该电动势通过VD1形成电流回路,电流途径是:L右正→VD1→C1→R→L左负,该电流方向由左往右,但电流随L上电动势下降而减小,在t5时刻电流I0变为0。在t4~t5期间,由于L产生左负右正电动势,A点电压较B点电压高,即Uo极性仍是左负右正,另外因为A点电压很高,虽然VT1的Ub1为高电平,VT1仍无法导通。

单相半桥逆变电路图

半桥式逆变电路结构简单,但负载两端得到的电压为直流电源电压的一半,并且直流侧需采用两个电容器串联来均压。半桥式逆变电路常用在几千瓦以下的小功率逆变设备中。

单相全桥逆变电路基本工作原理

工作原理:①第一阶段,VT1、VT4的基极控制脉冲都为高电平,VT1、VT4都导通,A点通过VT1与Ud正端连接,B点通过VT4与Ud负端连接,故R、L两端的电压Uo大小与Ud相等,极性为左正右负(为正压),流过R、L电流的方向是:Ud+→VT1→R、L→VT4→Ud-。

②第二阶段,VT1的Ub1为高电平,VT4的Ub4为低电平,VT1导通,VT4关断,流过L的电流突然变小,L马上产生左负右正的电动势,该电动势通过VD3形成电流回路,电流途径是:L右正→VD3→VT1→R→L左负,该电流方向仍是由左往右。由于VT1、VD3都导通,A点和B点都与Ud正端连接,即UA= UB,R、L两端的电压Uo为0(Uo=UA-UB)。在此期间,VT3的Ub3也为高电平,但因VD3的导通使VT3的c、e极电压相等,VT3无法导通。

在第三阶段,VT2、VT3的基极控制脉冲都为高电平,在此期间开始一段时间内,L还未能完全释放能量,还有左负右正电动势,但VT1因基极变为低电平而截止,L的电动势转而经VD3、VD2对直流侧电容C充电,充电电流途径是:L右正→VD3→C→VD2→R→L左负,VD3、VD2的导通使VT2、VT3不能导通,A点通过VD2与Ud负端连接,B点通过VD3与Ud正端连接,故R、L两端的电压Uo大小与Ud相等,极性为左负右正(为负压),当L上的电动势下降到与Ud相等时,无法继续对C充电,VD3、VD2截止,VT2、VT3马上导通,有电流流过R、L,电流的方向是:Ud+→VT3→L、R→VT2→Ud-。

在第四阶段,VT2的Ub2为高电平,VT3的Ub3为低电平,VT2导通,VT3关断,流过L的电流突然变小,L马上产生左正右负的电动势,该电动势通过VD4形成电流回路,电流途径是:L左正→R→VT2→VD4→L右负,该电流方向是由右往左。由于VT2、VD4都导通,A点和B点都与Ud负端连接,即UA=UB,R、L两端的电压Uo为0(Uo= UA-UB)。在此期间,VT4的Ub4也为高电平,但因VD4的导通使VT4的c、e极电压相等,VT4无法导通。之后进入下一个循环。

光伏发电系统中,蓄电池电压一般经dc-dc升压变换和什么变换后输出220v交流电压

用迈信伺服驱动器对伺服电机调零:控制方式PA4-4 ,确认返回,按住CO三秒,显示当前零位偏差线数, 转到编码器卡轴槽到符合要求的零位, 紧固编码器中心固定螺丝后再紧固编码固定片螺丝。伺服驱动器(servo drives)又称为“伺服控制器”、“伺服放大器”,是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今比较重要的技术课题,越来越多工控技术服务商对伺服驱动器进行了技术深层次研究

光伏发电系统中,蓄电池电压一般经dc-dc升压变换和什么变换后输出220v交流电压

目前我国光伏发电系统主要是直流系统,即将太阳电池发出的电能给蓄电池充电,而蓄电池直接给负载供电,如我国西北地区使用较多的太阳能户用照明系统以及远离电网的微波站供电系统(如图1所示)均为直流系统。此类系统结构简单,成本低廉,但由于负载直流电压的不同(如12V、24V、48V、等),很维实现系统的标准化和兼容性,特别是民用电力 ,由于大多为交流负载,以直流电力供电的光伏电源很难作为商品进入市场。另外,光伏发电最终将实现并网运行,这就必须采用成熟,今后交流光伏发电系统必将成为光伏发电的主流。

二、光伏发电系统对逆变电源的要求

采用交流电力输出的光伏发电系统,由光伏阵列、充放电控制器、蓄电池和逆变电源四部分组成(并网发电系统一般可省去蓄电池),而逆变电源是关键部件。光伏发电系统对逆变电源要求较高:

(1)要求具有较高的效率。由于目前太阳电池的价格偏高,为了最大限度地利用太阳电池,提高系统效率,必须设法提高逆变电源的效率。

(2)要求具有较高的可靠性。目前光伏发电系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变电源具有合理的电路结构,严格的元器件筛选,并要求逆变电源具备各种保护功能,如输入直流极性接反保护,交流输出短路保护,过热,过载保护等。

(3)要求直流输入电压有较宽的适应范围,由于太阳电池的端电压随负载和日照强度而变化,蓄电池虽然对太阳电池的电压具有钳位作用,但由于蓄电池的电压随蓄电池剩余容量和内阻的变化而波动,特别是当蓄电池老化时其端电压的变化范围很大, 如12V蓄电池,其端电压可在10V~16V之间变化,这就要求逆变电源必须在较大的直流输入电压范围内保证正常工作,并保证交流输出电压的稳定。

(4)在中、大容量的光伏发电系统中,逆变电源的输出应为失真度较小的正弦波。这是由于在中、大容量系统中,若采用方波供电,则输出将含有较多的谐波分量,高次谐波将产生附加损耗,许多光伏发电系统的负载为通信或仪表设备,这些设备对电网品质有较高的外,当中、大容量的光伏发电系统并网运行时,为避免铎公共电网的电力污染,也要求逆变电源输出正弦波电流。

三、逆变电源的原理与电路结构

逆变电源将直流电转化为交流,其电路原理如图3所示、功率晶体管T1、T3和T2、T4交替开通得到交流电力,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变电源,由人直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变电源中,由于直流电压较低,如12V、24V,就必须设计升压电路。

中、小容量逆变电源一般有推挽逆变电路、全桥逆变电路和高频升压逆变电路三种其主电路分别如图3、图4和 图5所示,图4所示的推挽电路,将升压变压器的中性抽头接于正电源,两只功率管交替工作,输出得到交流电力,由于功率晶体管共地边接,驱动及控制电路简单,另外由于变压器具有一定的漏感,可限制短路电流,因而提高了电路的可靠性。其缺点是变压器利用率低,带动感性负载的能力较差。

图3所示的全桥逆变电路克服了推挽电路的缺点,功率晶体管T1、T4和T2、T3反相,T1和T2相位互差180度。调节T1和T2的输出脉冲宽度,输出交流电压的有效值即随之改变。四只功率晶体管的控制信号和输出波形如图6所示,由于该电路具有能使T2和T4共同导通的功能,因而具有续流回路,即使对感性负载,输出电压波形也不会畸变。该电路的缺点是上、下桥臂的功率晶体管不共地,因此必须采用专门驱动电路或采用隔离电源。另外,为防止上、下桥臂发生共同导通,在T1、T4及T2、T3之间必须设计先关断后导通电路,即必须设置死区时间,其电路结构较复杂。

推挽电路和全桥电路的输出都必须加升压变压器,由于工频升压变压器体积大,效率低,价格也较贵,随着电力电子技术和微电子技术的发展,采用高频升压变换技术实现逆变,可实现高功率密度逆变,这种逆变电路的前级升压电路采用推挽结构,但工作频率均在20KHZ以上,升压变压器采用高频磁芯材料,因而体积小/重量轻,高频逆变后经过高频变压器变成高频交流电,又经高频整流滤波电路得到高压直流电(一般均在300V以上)再通过工频逆变电路实现逆变。

采用该电路结构,使逆变虬路功率密度大大提高,逆变电源的空载损耗也相应降低,效率得到提高,该电路的缺点是电路复杂,可靠性比上述两种电路低。

四、逆变电路的控制电路

上述几种逆变电源的主电路均需要有控制电路来实现,一般有方波和正弱波两种控制方式,方波输出的逆变电 源电路简单,成本低,但效率低,谐波成份大。正弦波输出是逆变电源的发展趋势,随着微电子技术的发民,有PWM功能的微处理器也已问世,因此正弦波输出的逆变技术已经成熟。

1、方波输出的逆变电源目前多采用脉宽调制集成电路,如SG3525,TL494等。实践证明,采用SG3525集成电路,并采用功率场效应管作为开关功率元件,能实现性能价格比较高的逆变电源,由于SG3525具有直接驱动功率场效应管的能力(图7)并具有内部基准源和运算放大器和欠压保护功能,因此其外围电路很简单。

2、正弦波输出的逆变电源控制集成电路

正弦波输出的逆变电源,其控制电路可采用微处理器控制,如INTEL公司生产的80C196MC、摩托罗拉公司生产的MP16以及MI-CROCHIP公司生产的PIC16C73等,这些单片机均具有多路PWM发生器,并可设定上、上桥臂之间的死区时间,采用INTEL公司80C196MC实现正弦波输出的电路如图8所示,80C196MC完成正弦波信号的发生,并检测交流输出电压,实现稳压。

五、逆变电源主电路功率器件的选择

逆变电源的主功率元件的选择至关重要,目前使用较多的功率元件有达林顿功率晶体管(BJT),功率场效应管(MOSFET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,因为MOSFET具有较低的通态压降和较高的开关频率,在高压大容量系统中一般均采用IGBT模块,这是因为MOSFET随着电压的升高其通态电阻也随之增大,而IGBT在中容量系统中占有较大的优势,而在特大容量(100KVA以上)系统中,一般均采用GTO作为功率元件。

 
友情链接
鄂ICP备19019357号-22