驱动电机基础知识

核心提示电机驱动系统是纯电动轿车中的关键系统,纯电动轿车的运行性能主要取决于电机驱动系统的类型和性能。纯电动轿车的驱动系统一般由整车控制器、电机、逆变器、DC- DC、减速器以及驱动轮构成。典型的纯电动汽车驱动系统,如图 1 所示。电机系统作为纯电

电机驱动系统是纯电动轿车中的关键系统,纯电动轿车的运行性能主要取决于电机驱动系统的类型和性能。纯电动轿车的驱动系统一般由整车控制器、电机、逆变器、DC- DC、减速器以及驱动轮构成。典型的纯电动汽车驱动系统,如图 1 所示。

电机系统作为纯电动汽车的唯一动力源,承担着电动汽车加速、减速、爬坡、高速匀速行驶等复杂工况的动力需求。同时汽车的工作环境恶劣,可靠性要求极高。

纯电动汽车驱动系统要求

项目 | 直流电机 | 交流电机 | 永磁同步电机 | 开关磁阻电机

----|------|----|-----

比功率|低|中|高|较高

峰值效率(%)|85 89|94 95|95 97|85 90

负荷效率(%)|88 91|79 85|90 92|78 86

转速范围(rpm)|4000 8000|9000 15000|4000~10000|>15000

可靠性|差|好|中|好

功率密度|低|中|最高|中

过载能力(%)|200|300 500|300|300 500

成本(¥/kw)|高|低|高|低于感应电机

控制操作性能|最好|好|好|好

控制器成本|低|高|高|一般

输出功率相对成本(元/kw)|1.0|0.8 1.2|1 1.5|0.6~1.0

近十年来,电动车电机驱动系统主要是开发系列化的交流异步电动机驱动系统、永磁无刷电动机驱动系统和开关磁阻电动机驱动系统。与原来的直流有刷电机驱动系统相比,以上驱动系统具有明显优势,其突出优点是体积小,质量轻,调速范围广,可靠性高。上表给出了各种电机驱动系统的性能比较。目前,美国的汽车公司大多采用高速、高效的交流异步电动机驱动系统,日本的汽车公司基本上采用永磁同步电动机驱动系统。

异步电动机其特点是结构简单,坚固耐用,成本低廉,运行可靠,低转矩脉动,低噪声,不需要位置传感器,转速极限高。

异步电动机矢量控制调速技术比较成熟,使得异步电动机驱动系统具有明显的优势,因此被较早应用于电动车的驱动系统,目前仍然是电动车驱动系统的主流产品(尤其在美国),但己被其他新型无刷永磁牵引电动机驱动系统逐步取代。

最大缺点是驱动电路复杂,成本高;相对永磁电动机而言,异步电动机效率和功率密度偏低。

永磁无刷电动机可采用圆柱形径向磁场结构或盘式轴向磁场结构,由于具有较高的功率密度和效率以及宽广的调速范围,发展前景十分广阔,在电动车辆牵引电机中是强有力的竞争者,已在国内外多种电动车辆中获得应用。

内置式永磁同步电动机也称为混合式永磁磁阻电动机。该电机在永磁转矩的基础上叠加了磁阻转矩,磁阻转矩的存在有助于提高电机的过载能力和功率密度,而且易于弱磁调速,扩大恒功率范围运行。内置式永磁同步电动机驱动系统的设计理论正在不断完善和继续深入,该电机结构灵活,设计自由度大,有望得到高性能,适合用作电动车高效、高密度、宽调速牵引驱动。这些引起了各大汽车公司同行们的关注,特别是获得了日本汽车公司同行的青睐。当前,美国汽车公司同行在新车型设计中主要采用内置式永磁同步电动机。

表面凸出式永磁无刷直流电机也称为永磁转矩电动机,相对内置式永磁同步电动机而言,其弱磁调速范围小,功率密度低。该结构电机动态响应快,并可望得到低转矩脉动,适合用作汽车的电子伺服驱动,如汽车电子动力方向盘的伺服电机。

无位置传感器永磁同步电动机驱动系统也是当前永磁同步电动机驱动系统研究的一个热点,将成为永磁同步电动机驱动系统的发展趋势之一,具有潜在的竞争优势。

永磁同步电动机驱动系统低速时常采用矢量控制,高速时用弱磁控制。

从20世纪os年代开关磁阻电动机驱动系统问世后,打破了传统的电机设计理论和正弦波电压源供电方式;并随着磁阻电机,永磁电机、电力电子技术和计算机技术的发展,交流电机驱动系统设计进入一个新的黄金时代;新的电机拓朴结构与控制方式层出不穷,推动了新一代机电一体化电机驱动系统迅猛发展。高密度、高效率、轻量化、低成本、宽调速牵引电机驱动系统已成为各国研究和开发的主要热点之一。

SRD开关磁阻电动机驱动系统的主要特点是电机结构紧凑牢固,适合于高速运行,并且驱动电路简单、成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。这些特点使SRD开关磁阻电动机驱动系统很适合电动车辆的各种工况下运行,是电动车辆中极具有潜力的机种。SRD的最大缺点是转矩脉动大,噪声大。此外,相对永磁电机而言,功率密度和效率偏低;另一个缺点是要使用位置传感器,增加了结构复杂性,降低了可靠性。因此无传感器的SRD也是未来的发展趋势之一。

永磁式开关磁阻电动机也称为双凸极永磁电动机,永磁式开关磁阻电动机可采用圆柱形径向磁场结构、盘式轴向磁场结构和环形横向磁场结构。该电机在磁阻转矩的基础上叠加了永磁转矩,永磁转矩的存在有助于提高电机的功率密度和减小转矩脉动,以利于它在电动车辆驱动系统中应用。

转子磁极分割型混合励磁结构同步电机这一概念一提出就引起国际电工界和各大汽车公司研发中心的极大关注。转子磁极分割型混合励磁结构同步电动机具有磁场控制能力,类似直流电动机的低速助磁控制和高速弱磁控制,符合电动车辆牵引电动机低速大力矩和恒功率宽调速的需求。目前该电机的研究处于探索阶段,电机的机理和设计理论有待于进一步深入研究与完善,作为候选的电动车辆牵引电动机具有较强的潜在的竞争优势。

开关磁阻性能好,优点明显同时缺点也非常明显,相关知识可参考以下链接。

开关磁阻电机基本介绍: 开关磁阻电机基础知识 、 百度百科:开关磁阻电机 、 开关磁阻电机特点及应用

在上表中我们可以看出交流异步电机的优点是:可靠性高,过载能力强、成本稍低,缺点是:功率密度相对较低、效率较低。永磁同步电机的优点是:效率高、功率密度高,缺点是:可靠性稍低,过载能力较低,成本较高。

针对这两类电机的优缺点个人认为:

1)交流异步电机比较适合用在大巴车、物流车等对安装布置空间不敏感,要求过载能力强的车型上。

2)永磁同步电机比较适合用在乘用车上,乘用车对安装布置空间要求高,一般不会产生过载。

如上表所示感应电机的损耗主要包括:转子铜损、杂散损耗、定子铜损(磁通电流)、定子铜损(转矩电流)、摩擦和风阻损耗、定子铁损这几部分组成。相同功率的永磁电机相比感应电机没有转子铜损和定子铜损(磁通电流)因此永磁电机相比感应电机效率更高。

交流异步电机只使用铁和铜材料组成不使用永磁材料, 永磁材料 温度特性差(一般80℃经过特殊处理的能够达到200℃),且易于粉化腐蚀,必须通过调整其化学成分和采取表面处理方法使之得以改进,才能达到实际应用的要求。相比交流异步电机永磁同步电机在耐温性能差和高转速下永磁容易产生机械损伤,因此永磁同步电机相比交流异步电机可靠性要差。

同时由于永磁同步电机磁场是由永磁体产生如不采取弱磁控制磁场强度是“恒定的”如果电机处于高转速下,电机的反电动势很可能会超过控制器的最高输出电压造成控制器损坏。因此在电机高速运行时会进行弱磁控制降低反电动势,以提高电机转速。

(1)首先检查控制方式是否正确; (2)检查给定信号选择和模拟输入方式参数设置是否有效; (3)主控板拨码开关设置是否正确; (4)以上均正确,则可能为电位器不良,应检查阻值是否正常。 过流保护(oc) (1)当 变频器 键盘上显示fooc时oc闪烁,此时

(1)首先检查控制方式是否正确;

(2)检查给定信号选择和模拟输入方式参数设置是否有效;

(3)主控板拨码开关设置是否正确;

(4)以上均正确,则可能为电位器不良,应检查阻值是否正常。

过流保护(oc)

(1)当变频器键盘上显示“fooc”时“oc”闪烁,此时可按“∧”键进入故障查询状态,可查到故障时运行频率、输出电流、运行状态等,可根据运行状态及输出电流的大小,判定其“oc”保护是负载过重保护还是vce保护(输出有短路现象、驱动电路故障及干扰等);

(2)若查询时确定由于负载较重造成加速上升时电流过大,此时适当调整加速时间及合适的v/f特性曲线;

(3)如果没接电机,空运行变频器跳“oc”保护,应断电检查igbt是否损坏,检查igbt的续流二极管和ge间的结电容是否正常。若正常,则需检查驱动电路:检查驱动线插接位置是否正确,是否有偏移,是否虚插;检查是否是因hall及线不良导致“oc”;检查驱动电路放大元件(如ic33153等)或光耦是否有短路现象;检查驱动电阻是否有断路、短路及电阻变值现象;

(4)若在运行过程中跳“oc”,则应检查电机是否堵转(机械卡死),造成负载电流突变引起过流;

(5)在减速过程中跳“oc”,则需根据负载的类型及轻重,相应调整减速时间及减速模式等。

过载保护(ol)

(1)当变频器键盘上显示“fool”时“ol”闪烁,此时可按“∧”键进入故障查询状态,可查到故障时运行频率、输出电流、运行状态等,可根据运行状态及输出电流的大小,若输出电流过大,则可能负载过重引起,此时应调整加、减速时间及v/f曲线、转矩提升等,若仍过载,则应考虑减轻负载或更换更大容量的变频器;

(2)若查询故障时输出电流并不大,此时应检查电子热过载继电器参数是否适当。

(3)检查hall及线是否有不良。

若变频器运行当中出现短路保护,停机后显示“0”,说明是变频器内部或外部出现了短路因素。这有以下几方面的原因:

(1) 负载出现短路这种情况下如果把负载甩开,即将变频器与负载断开,空开变频器,变频器应工作正常。这时我们用兆欧表(或称摇表)测量一下电机绝缘,电机绕组将对地短路,或电机线及接线端子板绝缘变差,此时应检查电机及附属设施。

(2) 变频器内部问题如果上述检测后负载无问题,变频器空开仍出现短路保护,这是变频器内部出现问题,应予以排除。

在逆变桥的模块当中,若IGBT的某一个结击穿,都会形成短路保护,严重的可使桥臂击穿,甚至于送不上电,前面的断路器将跳闸。这种情况一般只允许再送一次电,以免故障扩大,造成更大的损失,应联系厂家进行维修。

(3) 变频器内部干扰或检测电路有问题有些机子内部干扰也易造成此类问题,此时变频器并无太大的问题,只是不间断的、无规律的出现短路保护,即所谓的误保护,这就是干扰造成的。

变频器的短路保护一般是从主回路的正负母线上分流取样,用电流传感器经主控板的检测传至主控芯片进行保护的,因此这些环节上任何一处出现问题,都可能造成故障停机。

对于干扰问题,现低压大功率的及中高压变频器都加了光电隔离,但也有出现干扰的,主要是电流传感器的控制线走线不合理,可将该线单独走线,远离电源线、强电压、大电流线及其他电磁辐射较强的线,或采用屏蔽线,以增强抗干扰能力,避免出现误保护。

对于检测电路出现的问题,一般是电流传感器、取样电阻或检测的门电路问题。电流传感器应用示波器检测。

若波形不好或出现杂乱波形甚至于无波形,即说明电流传感器有问题,可更换一只新的。对取样电阻问题,有的机子使用时间长了,其阻值会变大,甚至于断路,用万用表可检测出来,应予以更换成原来的阻值的或少小一些的电阻。

对于检测的门电路,应检查在静态时的工作点,若状态不对应更换之。

(4) 参数设置问题对于提升机类或其他(如拉丝机、潜油电泵等)重负荷负载,需要设置低频补偿。若低频补偿设置不合理,也容易出现短路保护。一般以低频下能启动负载为宜,且越小越好,若太高了,不但会引起短路保护,还会使启动后整个运行过程电流过大,引起相关的故障,如IGBT栅极烧断,变频器温升高等。因此应逐渐加补偿,使负荷刚能正常启动为最佳。

(5) 在多单元并联的变频器中,若某一单元出现问题。势必使其他单元承担的电流大,造成单元间的电流不平衡,而出现过流或短路保护。因此对于多单元并联的变频器,应首先测其均流情况,发现异常应查找原因,排除故障。各单元的均流系数应不大于5%。

.2 过流保护变频器出现过流保护,代码显示“1”,一般是由于负载过大引起,即负载电流超过额定电流的1.5倍即故障停机而保护。这一般对变频器危害不大,但长期的过负荷容易引起变频器内部温升高,元器件老化或其他相应的故障。

这种保护也有因变频器内部故障引起的,若负载正常,变频器仍出现过流保护,一般是检测电路所引起,类似于短路故障的排除,如电流传感器、取样电阻或检测电路等。该处传感器波形如图4所示,其包络类似于正弦波,若波形不对或无波形,即为传感器损坏,应更换之。

过流保护用的检测电路是模拟运放电路。

在静态下,测相关工作点的工作电压,若电压不对即为该电路有问题,应查找原因予以排除。取样电阻若有问题也应更换之。过流保护的另一个原因就是缺相。当变频器输入缺相时,势必引起母线电压降低,负载电流加大,引起保护。而当变频器输出端缺相时,势必使电机的另外两相电流加大而引起过流保护。所以对输入及输出都应进行检查,排除故障。

3 过、欠压保护变频器出现过、欠压保护,大多是由于电网的波动引起的,在变频器的供电回路中,若存在大负荷电机的直接启动或停车,引起电网瞬间的大范围波动即会引起变频器过、欠压保护,而不能正常工作。这种情况一般不会持续太久,电网波动过后即可正常运行。这种情况的改善只有增大供电变压器容量,改善电网质量才能避免。

当电网工作正常时,即在允许波动范围(380V±20%)内时,若变频器仍出现这种保护,这就是变频器内部的检测电路出现故障了。

当W调节不当时,即会使过、欠压保护范围变窄,出现误保护。此时可适当调节电位器,一般在网电380V时,使变频器面板显示值(运行中按住“〈”键〉与实际值相符即可。当检测回路损坏时,如整流桥、滤波电容或R、W及任一器件出现问题,也会使该电路工作不正常而失控。

对于提升机变频器,因回馈电网污染,增加了隔离电路,有时调节不当也会出现误保护,此时应根据电网的波动仔细调节。因提升机负载在运行中电网是波动的,在提升重物时,电压下降(有的可降20V),在下放时回馈电网电压升高,可根据这种变化进行调节,直至在稳态下适合为止。

2.4 温升过高保护变频器的温升过高保护(面板显示“5”),一般是由于变频器工作环境温度太高引起的,此时应改善工作环境,增大周围的空气流动,使其在规定的温度范围内工作。再一个原因就是变频器本身散热风道通风不畅造成的,有的工作环境恶劣,灰尘、粉尘太多,造成散热风道堵塞而使风机抽不进冷风,因此用户应对变频器内部经常进行清理(一般每周一次)。也有的因风机质量差运转过程中损坏,此时应更换风机。还有一种情况就是在大功率的变频器(尤其是多单元或中高压变频器)中,因温度传感器走线太长,靠近主电路或电磁感应较强的地方,造成干扰,此时应采取抗干扰措施。如采用继电器隔离,或加滤波电容等。

5 电磁干扰太强这种情况变频器停机后不显示故障代码,只有小数点亮。这是一种比较难处理的故障。包括停机后显示错误,如乱显示,或运行中突然死机,频率显示正常而无输出,都是因变频器内外电磁干扰太强造成的。

这种故障的排除除了外界因素,将变频器远离强辐射的干扰源外,主要是应增强其自身的抗干扰能力。特别对于主控板,除了采取必要的屏蔽措施外,采取对外界隔离的方式尤为重要。首先应尽量使主控板与外界的接口采用隔离措施。我们在高中压及低压大功率变频器及提升机变频器中采用了光纤传输隔离,在外界取样电路(包括短路保护、过流保护、温升保护及过、欠压保护)中采用了光电隔离,在提升机与外界接口电路中采用了PLC隔离,这些措施都有效避免了外界的电磁干扰,在实践应用中都得到了较好的效果。再一点就是对变频器的控制电路(主控板、分信号板及显示板)中应用的数字电路,如74HC14、74HC00、74HC373及芯片89C51、87C196等,应特别强调每个集成块都应加退耦电容。

每个集成块的电源脚对控制地都应加10μF/50V的电解电容并接103(0.01μF)的瓷片电容,以减小电源走线的干扰。对于芯片,电源与控制地之间应加电解电容10μF /50V并接105(1μF)的独石电容,效果会更好些。笔者曾对一些干扰严重的机型进行过以上处理,效果较好。对这类故障应逐渐积累经验,不断寻求解决途径。有些机子使用时间太久,线路板上的滤波电容容量不够造成滤波效果差,造成变频器死机或失控,这种情况不太好处理,可更换一块新线路板,一般可解决问题。

3 变频器的其他故障

除以上有变频器故障代码显示的故障外,变频器还有一些非显示的故障,现分析如下,供大家参考。

3.1 主回路跳闸这种故障表现为变频器运行过程中有大的响声(俗称“放炮”),或开机时送不上电,变频器控制用的断路器或空气开关跳闸。这种情况一般是由于主电路(包括整流模块、电解电容或逆变桥)直接击穿短路所致,在击穿的瞬间强烈的大电流造成模块炸裂而产生巨大响声。关于模块的损坏原因,是多方面的,不好一概而论。现仅就笔者所遇到的几类情况加以列举。

(1) 整流模块的损坏大多是由于电网的污染造成的。因变频器控制电路中使用可控整流器(如可控硅电焊机、机车充电瓶等都是可控整流器),使电网的波形不再是规则的正弦波,使整流模块受电网的污染而损坏,这需要增强变频器输入端的电源吸收能力。在变频器内部一般也设计了该电路。但随着电网污染程度的加深,该电路也应不断改进,以增强吸收电网尖峰电压的能力。

(2) 电解电容及IGBT的损坏主要是由于不均压造成的,这包括动态均压及静态均压。在使用日久的变频器中,由于某些电容的容量减少而导致整个电容组的不均压,分担电压高的电容肯定要炸裂。IGBT的损坏主要是由于母线尖蜂电压过高而缓冲电路吸收不力造成的。在IGBT导通与关断过程中,存在着极高的电流变化率,即di/dt,而加在IGBT上的电压即为: U=L×di/dt 其中L即为母线电感,当母线设计不合理,造成母线电感过高时,即会使模块承担的电压过高而击穿,击穿的瞬间大电流造成模块炸裂,所以减小母线电感是作好变频器的关键。我们改进电路采用的宽铜排结构效果较好。国外采用的多层母线结构值得借鉴。

(3) 参数设置不合理。尤其在大惯量负载下,如离心风机、离心搅拌机等,因变频器频率下降时间过短,造成停机过程电机发电而使母线电压升高,超过模块所能承受的界限而炸裂。这种情况应尽量使下降时间放长,一般不低于300s,或在主电路中增加泄放回路,采用耗能电阻来释放掉该能量。 R即为耗能电阻。在母线电压过高时,使A管导通,使母线电压下降,正常后关断。使母线电压趋于稳定,保证主器件的安全。

(4) 当然模块炸裂的原因还有很多。如主控芯片出现紊乱,信号干扰造成上下桥臂直通等都容易造成模块炸裂,吸收电路不好也是其直接原因,应分别情况区别对待,以期把变频器作的更好。

3.2 延时电阻烧坏这主要是由于延时控制电路出问题造成的。

(1) 在变频器延时电路中,大多是用的晶闸管(可控硅)电路,当其不导通或性能不良时,就可造成延时电阻烧坏。这主要是开机瞬间造成的。

(2) 在变频器运行过程当中,当控制电路出现问题,有的是由于主电路模块击穿,造成控制电路电压下降,使延时可控硅控制电路工作异常,可控硅截止使延时电阻烧坏。也有的是控制变压器供电回路出现问题,使主控板失去电压瞬间造成晶闸管工作异常而使延时电阻烧坏。

3.3 只有频率而无输出这种故障一般是IGBT的驱动电路受开关电源控制的电路中,当开关电源或其驱动的功率激励电路出现故障时,即会出现这种问题。

在风光变频器中,开关电源一般是选30~35V, ±15V或±12V,功率激励的输出为一方波,其幅度为±35V,频率在7kHz左右。检测这几个电压值,用示波器测量功率激励的输出即可加以判别,如图12所示。但更换这部分器件后,应加以调整,使驱动板上的电压符合规定值(+15V、-10V)为宜。

3.4 送电后面板无显示这主要是提升机类变频器常出现的故障,因此类变频器主控板用的电源为开关电源,当其损坏时即会使主控板不正常而无显示。这种电源大多是其内部的熔断器损坏造成的。因在送电的瞬间开关电源受冲击较大,造成保险丝瞬间熔断,可更换一个合适的熔断器即可解决问题。有的是其内的压敏电阻损坏,可更换一支新的开关电源。

3.5 频率不上升即开机后变频器只在“2.00”Hz上运行而不上升,这主要是由于外控电压不正常所致。变频器的外控电压是通过主控板的16脚端子引入的,若外控电压不正常,或16脚的内部运放出了问题,即会引起该故障,

这时请检查调节频率用的电位W2(3.9K),测量一下16脚有无0~5V的电压,进而检测运放电路C点工作是否正常。若16脚电压正常,而C点无输出,一般是运放的工作电压不正常所致,应检查其供电电压是否正常或运放是否损坏等。

 
友情链接
鄂ICP备19019357号-22