石油钻井方法有哪些?

核心提示目前,世界上广泛采用钻井方法来取得地下的石油和天然气。随着石油工业的不断发展,钻井深度不断增加,油气井的建设速度也随之加快,促使钻井方法、技术和工艺得到很大改进。从已钻成的千百万口油气井的资科中可以看到变化过程:顿钻逐渐被旋转钻代替,井身结

目前,世界上广泛采用钻井方法来取得地下的石油和天然气。随着石油工业的不断发展,钻井深度不断增加,油气井的建设速度也随之加快,促使钻井方法、技术和工艺得到很大改进。从已钻成的千百万口油气井的资科中可以看到变化过程:顿钻逐渐被旋转钻代替,井身结构从复杂到简单,井眼直径日趋缩小等等。

一、钻井工艺发展概况和趋势石油钻井是油田勘探和开发的重要手段。一个国家石油工业的发展速度,常与它的钻井工作量及科学技术水平紧密相关。近20年来,世界石油产量和储量剧增,钻井工作量相应地大幅度增加,钻井科学技术水平也得到了飞速发展。在此期间钻井技术发展的特点是从经验钻井进展到科学化钻井。钻井深度、斜度、区域和地区也有长足的发展。从钻浅井、中深井发展到钻深井和超深井;从钻直井和一般斜井发展到钻大斜度井和丛式井;从陆上钻井发展到近海和深海钻井;从地面条件好的地区钻井发展到条件恶劣的地区(如沙漠、沼泽和寒冷地区)钻井。在钻井技术发展的同时,设备、工具和测量仪表也得到了相应的发展。

美国钻井工作者曾将旋转钻井技术的发展进程分为四个时期:

(1)概念时期(1900—1920年)。这个时期开始把钻井和洗井两个过程结合在一起,开始使用牙轮钻头并用水泥封固套管。

(2)发展时期(1920—1948年)。这个时期牙轮钻头有所改进,提高了进尺和使用寿命。固井工艺和钻井液有了进一步的发展,同时出现了大功率的钻机。

(3)科学化钻井时期(1948—1968年)。这个时期大力开展钻井科学研究工作,钻井技术飞速发展。该时期的主要技术成就有:发展和推广了喷射钻井技术;发展了镶齿、滑动、密封轴承钻头;应用低固相、无固相不分散体系钻井液;发展了地层压力检测技术、井控技术和固控技术,提出了平衡钻井的理论及方法。

(4)自动化钻井时期(1968年至今)。这个时期发展了自动化钻机和井口自动化工具。钻井参数自动测量和计算机在钻井工程中得到广泛应用,最优化钻井和全盘计划钻井也初具规模。

目前,钻井人员一般把钻井技术发展的前两个时期称为经验钻井阶段,把后两个时期称为科学化钻井阶段。时期的划分直观地描述了钻井技术发展的过程,揭示了其发展规律。

任何一门科学和技术都有其自身的发展规律和要达到的主要目标。钻井工作是为油田勘探和开发服务的重要手段。钻井技术的发展首先要保证钻井质量,即所钻油气井要满足油气田勘探和开发的要求,要在此基础上来提高钻井速度、缩短钻井周期、降低钻井成本。

近20年来的实践证明,现代钻井工艺技术将围绕以下三个方面发展:

(1)提高钻井速度,降低生产成本;(2)保护生产层,减少油气层的污染和损害;(3)改善固井、完井技术,适应采油要求,延长油气井寿命。

新中国成立以来,我国钻井技术发展较快。特别是1978年推广喷射钻井、低固相优质钻井液、四合一牙轮钻头等新技术后,我国的钻井技术水平又有显著提高,进入了科学化的钻井阶段,但与国外先进水平相比,还存在一定的差距。为了使我国的钻井水平能满足勘探开发的需要,努力赶上世界先进水平,必须要向钻井技术进步要速度、要质量、要经济效益,为加速勘探开发步伐、不断增加油气产量作出贡献。

二、冲击钻井方法冲击钻井是一种古老的钻井方法,也是旋转钻井方法出现以前唯一的钻油气井的方法。它是将破碎岩石的工具(钢质尖头钻头)提至一定高度,借钻头本身的重力冲向井底,击碎岩石。然后捞取被击碎的岩屑,以便继续钻进。因此,冲击钻井方法又被称为顿钻。

由于冲击钻井时,破碎岩屑与清除岩屑必须间断地进行,因此钻井速度很慢,不能满足石油生产发展的需要。冲击钻井现在已基本上被旋转钻井所代替,仅在一些埋藏浅、压力低的油田还能见到。

三、旋转钻井方法提高钻速的根本途径是改变钻井方法,这正是旋转钻井法产生的原因。旋转钻井法的实质是:钻头在压力作用下吃入岩石,同时在转动力矩的作用下连续不断地破碎岩石;被破碎的岩屑由地面输入的钻井液(泥浆、水、空气等)及时带走,钻井液可以连续不断地清除岩屑。这样,一只钻头可以在井底连续钻进十几米、几十米甚至数百米后才起至地面进行更换。由于使用了钻井液,可长时间稳定井眼、控制复杂地层。旋转钻井的钻井速度高,能适应多种复杂情况,目前世界上大多使用这种方法钻油气井。旋转钻井通常也称为转盘钻。

利用钻杆和钻铤(厚壁钢管)的重力对钻头加压,钻压要使钻头能够吃入岩石。破碎岩石所需的能量是从地面通过沉重的钢性钻柱传给钻头的。起、下钻的过程比较繁琐,必须将钻柱拆卸成许多立柱,才能起出钻头;而下钻时又必须逐根接上。为了连续洗井,钻井液从转动的空心钻柱里流向井底,再带着岩屑从钻柱外部与井壁形成的环形空间返回地面。钻头钻进、清洗井底以及起、下钻所需的动力全部由安装在地面上的相应设备提供,这些机器设备总称为钻机。

现代旋转钻井的工艺过程表现为四个环节,即钻进、获取地质资料、完井和安装。

钻进环节由一系列按严格的顺序重复的工序组成:把钻柱下入井里;旋转和送进钻头使其在井底破碎岩石,同时循环钻井液;随着井筒的加深而接长钻柱;起、下钻柱以更换被磨损的钻头;洗井,净化或配制钻井液,处理复杂情况和事故等辅助作业。

为了获得全面准确的地质资料,钻井过程中不仅需要进行岩屑、钻时、钻井液录井工作,而且还要进行钻取岩心、测井等工作。通过各种地球物理测井方法,可以获得井径、井斜、方位、岩性等基本数据,掌握和了解井眼质量以及地层和油气层的某些特性。

在钻穿油气层以后,需要下入油层套管,并注入水泥以隔离油气层与其他地层,使油气顺利地流到地面上来。根据油气井生产的要求做好井底完成工作是很重要的一道工序。

从确定井位开始,就需要平整井场、挖基础坑、泥浆池、圆井等土方工程;为运输机器设备而修筑公路;铺设油、水、气管线,架设电线,以输送油、水、气和电力打好地基以安装设备、井架等。基础工作完成后,要进行大量的井架、设备等搬运和安装工作,还需做好开钻前的一切准备工作,如检查机器设备、试车、固定导管、钻鼠洞、调配钻井液、接好钻具等。

旋转钻井过程中,驱动钻柱旋转、克服钻柱与井壁的摩擦消耗了部分能量。为了减少这些无益的能量损失,1940年前后出现了井下动力钻井方法。井下动力钻井所用设备与旋转钻井基本相同,只是钻头不再由转盘带动旋转,而是由井下动力钻具直接驱动。典型的井下动力钻具是涡轮钻具,因此井下动力钻井又常称为涡轮钻井。目前,井下动力钻井在定向钻井技术中得到了广泛的应用。

近年来,一些工业发达国家还竞相开展了热力钻井、高压冲蚀钻井、等离子射流钻井和激光钻井等新型钻井方法的研究。随着科学技术的进步,新的钻井方法还将不断涌现,钻井工程也必将进入一个全新的科学化时期。

四、井身结构井身结构是油气井全部基本数据的总称。它包括以下数据:从开钻到完钻所用的钻头、钻柱尺寸和钻柱长度套管的层次、直径各层套管的下入深度、钢级和壁厚各层套管注水泥的数据。由此可见,井身结构是全部钻井过程计划和施工的重要依据。图5-1为井身结构的示意图。

图5-1 井身结构

首先下入长度约4~6m的短套管,也称导管,用于加固地表以免被钻井液冲毁,保护井口完整。同时将循环的钻井液导入泥浆净化系统内。

第二次下入的套管叫表层套管,用于封隔地表不稳定的疏松地层或水层、安装井口防喷器。一般深度为40~60m,有时可达500~600m。

当裸眼(未被套管隔离的井眼)长度超过2000~3000m或者地层剖面中存在高、低压油层、气层、水层和极不稳定的地层时,钻进过程中为避免发生工程事故需要下入中间套管,又叫技术套管。目的是封隔复杂地层,防止喷、漏、卡、塌等恶性事故发生,保证安全钻井。技术套管的层次和下入的深度根据地质和钻井条件确定。

最后下入的套管叫油层套管,用于采油、采气或者向生产层注水、注气,封隔油层、气层和水层,保证油气井正常生产。油层套管的下入深度取决于井底的完成方法。油层套管一般从井口下到生产层底部或者只从生产层顶部下到底部。实际工作中对部分下入的油层套管,根据作用取不同的名称,如尾管、筛管、滤管以及衬管等。

井身结构是由钻井方法、钻井目的、地质条件与钻井技术水平决定的。周密考虑各种影响因素,制定合理的井身结构,是保证高速度钻井与油气井投产后正常产出的关键。

综上所述,现代石油钻井工程是一项复杂的系统工程。由多工序、多工种联合作业,需要各种先进的科学技术和生产组织管理水平。

国内外科学钻探及超深井取心现状

百度是世界最大的中文网站,覆盖了95%的中国网民,这是任何其他推广方式都不能具备的优势。目前百度推广已经为20万企业带来了大量商机,覆盖各行各业、各个地区,给很多企业带来了意想不到的效果。百度推广是按效果付费的推广模式,给您带来全新的推广体验,针对性更强,可以灵活控制投放策略,达到更好的推广效果,可以说是网络推广的首选服务。

1.做搜索为什么选择百度公司:

首先,是百度的由来,百度掌门人李彦宏1999年从美国硅谷带会搜索引擎的专利技术并与2000年成立百度公司,百度名字的来由出自辛弃疾的“众里寻他千百度”。12年来百度本着“简单,可依赖”的企业文化与“让人们最平等便捷地获取信息,找到所求”的使命服务于全球134个国家地区,根据艾瑞普的调查截止2011年百度在中文搜索引擎的市场占有率达到了将近84%,在国内将近40万家大中小型企业通过百度掘金。

2.当前,企业主面临的主要推广难题?

客户数量不足、开发新客户难度大、生产与运营成本增加、企业知名度低、资金短缺、营销渠道有限、缺乏人才等,概括起来就是缺少一种专业、性价比高的推广方法帮助其获得更多的客户、提升企业知名度。

3.针对解决以上难题,百度有着自己的办法与优势:

广(覆盖面广)、准(针对性强)、省(按效果付费)、活(管理灵活)、专(全程专业服务)。

百度目前能覆盖到网民人数近4亿,市场份额高达83.6% !网民“有问题,百度一下”都成了实现“搜索”的代名词;

通过关键词锁定有需求的客户,通过地域、时段筛选,锁定您最需要的客户;

免费获得海量展现,展现不花钱,不点击不花钱!

统计报告,自主推广,灵活设定;

多种多样的服务方式:电话、上门、培训、电子邮件、服务网站、自助工具等.

1.1.1 科拉3井取心技术

前苏联在深部地质研究中十分重视科学深钻的作用,执行了世界上最庞大的科学钻探计划,开钻的6000m以上超深井就有10口左右,其中位于科拉半岛的SG-3井以12262m的深度雄居世界深井之冠。因此,SG-3井是我国实施13000m科学超深井最具参考价值的科学钻探井,其所获得的地层信息和取心方法均值得我们借鉴。

1.1.1.1 钻进碎岩方法

前苏联4000m以上科学钻井的终孔直径一般设计为216mm。该直径进行取心钻进属于大直径取心钻进,采用的主要钻进工具是牙轮钻头。在科拉、乌拉尔和萨阿特累超深井钻进中,都进行过各种金刚石钻头与牙轮钻头使用的对比试验,因为当时金刚石钻头技术水平尚差,结果证明后者为佳。如在乌拉尔超深井中,斯拉乌季契(一种金刚石烧结体)钻头的钻进效率为0.2~0.3m/h、寿命30m;表镶金刚石钻头效果更差;牙轮取心钻头的钻进效率为1~1.5m/h、寿命为7~10m,已满足一般回次长度的要求(8m左右)。

在SG-3井的片麻岩、角闪岩和花岗岩混合岩层中,采用216×60mm牙轮取心钻头的使用效果如下:1217个取心回次的平均钻速为1.8m/h、平均回次进尺为7.6m,但用牙轮钻头取心对岩心采取率有非常不利的影响,虽采用“水力输送岩心取样器”大大减轻了此种影响,全孔岩心采取率也仅为40%。

1.1.1.2 回收岩心方式和取心工具

SG-3井施工尽管几乎是全井取心,也还是通过提钻回收岩心,没有采用绳索取心,原因如下:①牙轮钻头的寿命只有10m左右,采用“水力输送岩心取样器”回次进尺可达8m左右,故采用绳索取心已无意义和必要;②采用绳索取心钻进,岩心易堵塞,回次进尺长度仅能达到3~5m;③“水力输送岩心取样器”的岩心采取率要优于绳索取心。

1.1.1.3 水力输送岩心取样器

在结晶岩的构造应力带,岩石破碎严重。尤其在超深井段,地应力释放导致岩心片化,使岩心变成薄片和碎块,因此,结晶岩超深井的取心是一大技术难题。加上牙轮钻头的取心效果本来就差,故一般的取心钻具用于此种场合时岩心采取率非常低。通过逐步摸索和反复实践,前苏联研制了一种“水力输送岩心取样器”,它可使钻井液在井底实现局部反循环,促进岩心上行,将岩心输送到一个下端封闭的岩心容纳室中,进入此室中的岩心在提钻过程中肯定不会脱落。该取心系统型号为MAT,已成系列,经改进、完善后效果很好,已在其他超深井施工中推广使用。

1.1.2 中国大陆科学钻探工程科钻一井

CCSD-1井是我国实施最深的科学钻探井,也是近期国际大陆科学钻探实施的最深井,是在超高压变质带结晶岩地层中实施的全孔取心钻探井。运用了螺杆马达+液动锤驱动金刚石钻头回转冲击钻进技术,该技术在坚硬结晶岩地层中取得了巨大成功,是我国现代取心钻进技术水平的体现,这为实施13000m科学超深井奠定了技术基础。

1.1.2.1 取心钻头的选择

在硬岩中进行取心钻进,可以选择牙轮取心钻头或金刚石取心钻头。由于牙轮钻头与金刚石钻头在井底的运动特性各异,金刚石钻头钻取的岩心质量较牙轮钻头好很多。

中空牙轮取心钻头在井底回转破碎岩石时,其牙轮既绕钻头轴线公转,又绕牙轮轴线自转。由于钻头中心必须留有空间让岩心通过,其牙轮的锥顶不可能布置在其公转中心,因此,牙轮齿在井底岩石表面产生滚动的同时,还产生滑动。牙轮沿井底旋转滚动时,当牙轮双排齿接触井底岩石时,牙轮的轴心位置最低;而当滚动到单排齿接触井底时,牙轮的轴心便升到最高位置。牙轮在滚动过程中,轴心从最低位置到最高位置,又从最高位置到最低位置,如此反复交替,从而产生纵向振动。因此牙轮在自转、公转、滑动、轴向振动的复合作用下,产生滚动、滑动和冲击振动,冲击、压碎、剪切、切削岩石。由于牙轮在孔底的滑动与振动,使得钻取的岩心表面粗糙,即使在完整的岩层,岩心也很破碎,取心质量较差、采取率低。

金刚石钻头,特别是孕镶金刚石钻头,由于其切削刃粒度小,切入岩石的深度有限,当其在孔底回转时,不会像牙轮钻头那样因切削工具本身的运动而产生振动。而且,钻头在高速旋转时,会产生陀螺效应。因此金刚石钻头在井底转动时,比牙轮钻头要稳定得多,因而所钻取的岩心表面光滑、连续,岩心完整,取心质量好。

综上所述,从岩心采取率和岩心质量考虑,为更好地满足科学钻探井的地学研究,CCSD-1井选择了金刚石钻头取心钻进。

1.1.2.2 岩心打捞方式的选择

岩心打捞方式主要从绳索取心和提钻取心中选择。经过技术经济的理论分析,如钻头寿命能远大于提钻取心回次进尺长度,则绳索取心当属首选。但是,由于德国进口的绳索取心钻杆存在严重质量问题,不得不采用了金刚石钻头提钻取心钻进方式。

1.1.2.3 取心钻进方法的选择

金刚石钻头线速度要求达到2m/s,故Φ157mm钻头的转速需达243r/min。显然,石油钻机的转盘转速不能满足金刚石钻头提钻取心钻进对转速的要求。要提高转速,解决的办法有两种:一是加装高速顶部驱动系统,二是配备高速井底马达。

井底马达驱动方式具有能耗低,对井壁的扰动小的优点,因此,CCSD-1井采取了井底螺杆马达驱动方式。但是,Φ157mm钻孔直径限制了螺杆马达的直径不能太大,因而其输出功率受到限制。加之金刚石钻进要求钻头转速高,要满足转速的要求,螺杆马达的输出扭矩必然受到限制。要确保钻井施工的正常进行,首先必须保证钻头能够正常地回转,这就意味着要牺牲一定的钻压。钻压的减少,必然导致钻速的降低。为此,CCSD-1井在取心钻具组合中加入了一套液动锤,在钻头上施加冲击,使得钻进时所需的钻压大大减少,施加的钻压只要能足以克服井底钻具的反弹即可,破碎岩石主要依靠液动锤产生的冲击力。

CCSD-1井取心钻进总进尺5004.95m,其中使用螺杆马达驱动的冲击回转金刚石钻头取心钻进4042.73m,占取心钻进总进尺的80.770%,平均机械钻速为1.134m/h,平均回次长度6.34m,平均岩心采取率达85.45%。结果表明,螺杆马达+液动锤驱动的冲击回转取心钻进方法,不仅能大大节省能源、减少钻杆磨损,而且钻进效率高,回次进尺长。

1.1.3 塔深1井超深井取心技术

塔深1井完井井深8408m,是中石化重点超深井,目的是为加快塔河油田油气勘探步伐,探索下古生界寒武系大型建隆圈闭的含油气性,实现新领域的导向性突破,从而完成“塔河之下找塔河”的油气勘探目标。为了解目的层物性资料和储层发育情况,该井设计了4段目的层取心。由于该井超深,且取心井段在该井侧钻后长斜裸眼中,岩性以白云岩为主,裂缝发育、地层极破碎,取心施工难度非常大,虽取心段短,也遇到一些在超深井取心中的工艺技术难点。该井在超深井段取心总进尺18.70m,平均取心收获率78.8%,取心深度达到8408m,为我国实施科学超深井提供了宝贵的经验。

1.1.3.1 取心技术难点

除井超深,钻具柔性强等超深井都将面临的难题外,取心井段在该井侧钻后斜裸眼中(井斜6°~25°),斜裸眼段长(6859~8408m),取心段岩性为粉晶和微晶白云岩,裂缝发育,岩性破碎(图1.1)。因此,该井取心技术难点一是破碎岩心造成堵(卡)心,二是钻具在超深、井斜井眼内失稳。在井斜14°~25°,侧钻后裸眼长600~1550m井段,取心钻具稳定性非常差,失稳状态下将造成钻头一侧承受过大钻压,其受过压部分的切削齿就会因超载和冷却不良,过早磨损,甚至过烧,同时也造成钻头的旋转中心偏离几何中心的情况间歇发生,取心钻头未达到良好的工作状态导致采取率降低,第3、4、5回次岩心采取率仅40.7%~71.6%。

图1.1 高角度裂隙发育的岩心

1.1.3.2 取心钻进方案措施

采用了川5-5型取心钻具,取心钻头直径Φ149mm。研究采用了精确的双流道设计和低侵蚀聚晶金刚石钻头,有效地降低钻头底部冲刷岩心的流速,减小了钻井液对破碎岩心的冲蚀。驱动方式采用地表转盘单回转,因此,虽地层可钻性级别不高,机械钻速也仅在1m/h左右,且至最后一回次(井深8408m)时,钻速降至0.74m/h。

1.1.4 其他科学钻探工程

1.1.4.1 德国KTB计划主孔

KTB计划主孔于1990年10月6日至1994年10月12日完成(9101m)施工。钻孔剖面的主要岩石为片麻岩、角闪片麻岩、角闪岩、变质的辉长岩和大理岩等。主孔在4000m以浅不取心,但连续采取了岩屑样品。4000m以深使用牙轮钻头和金刚石钻头仅累计取心83.34m,且8085.1m以深后期因技术问题未取心。深部、超深部取心比例小成为KTB计划的一大遗憾。

1.1.4.2 松科一井(主井)

位于大庆油田的SK-1井,是国家“973”计划项目“白垩系地球表层系统重大地质事件与温室气候变化”的所属工程,是国际大陆科学钻探计划框架下的全球首例陆相白垩系科学钻探工程。其科学目标之一,是通过厘米级样品的取样与分析,建立全球范围内可对比的陆相白垩系综合剖面,将传统地质学的百万年时间分辨率提高到万年尺度,使地质学研究能够为预测未来全球环境变化提供更多的科学依据,因此,高质量地采取需研究地层的岩心实物,对该项目极为重要。

SK-1井(主井)完钻井深1810m,164.77~1729m连续取心,钻遇了松散砂岩、水敏泥岩、疏松砂岩、弱胶结砾岩、致密泥页岩等沉积岩地层。沿用的是CCSD-1井研制的KT140取心钻具。为克服松散地层采取率低,软泥岩地层泥包、抽吸作用,地层频繁穿插变化,致密地层机械钻速低等困难,研发与选用硬质合金、PDC钻头、孕镶金刚石3类多种结构形式的钻头和2种隔液保形单动双管取心钻具,采用转盘单回转与螺杆马达+转盘复合回转钻进工艺,取得了一系列沉积岩地层取心钻进的成果。

1.1.4.3 WFSD工程

汶川地震断裂带科学钻探工程(WFSD)的主要实施目的之一是连续获取岩心,供地学研究地震断裂发震机理。龙门山断裂带历史上经历了多次地震,地层主要是极其破碎,并含有部分极松散无胶结地层、强水敏性断层泥岩地层。因此,如何在极破碎、松散地层中高效、优质地取心钻进是WFSD钻探施工的关键技术。针对WFSD工程复杂地层条件,采用了隔液、半隔液取心钻进结构、半合管无损出心、转盘+螺杆钻复合回转钻进、转盘+螺杆钻+液动锤复合回转冲击钻进等有效的技术手段。

WFSD工程取心钻进所遇的最大难题是,几个子工程均全孔破碎,堵(卡)心严重,这导致工程平均回次进尺短,虽采用了隔液、半隔液的钻进结构,孔底动力驱动稳定取心钻具等措施,平均回次仍难达到3m。岩心的原状性对地震科学钻探和环境科学钻探都极其重要,SK-1井研发了水力出心装置,WFSD工程采用了半合管技术,很好的确保的岩心的原状出管。项目组在半合管加工工艺上不断地突破,将半合管长度从最初的1.5~2m加长至6m。

1.1.5 超深井取心技术难点分析

分析以上国、内外已实施的科学钻探井和石油天然气钻井的超深井取心,实施13000m科学超深井,取心钻进所面临的主要难点是:高强度、刚度、稳定性和单动可靠性高的取心钻具及配套的取心钻头、扩孔器的设计;6000m以浅沉积岩地层的多变性,即存在难取心地层、又存在难钻进地层;6000m以深结晶岩地层主要是如何实现快速、长回次的取心钻进,解决超深部因应力释放导致的破碎、片化地层堵(卡)心。

1.1.5.1 取心钻具设计

超深部取心钻进是在高温、高围压、地应力释放强烈的条件下进行,拟由地表与加冲击器的孔底动力机联合驱动。强度高、刚度、稳定性和单动可靠性好的取心钻具及配套的钻头、扩孔器的结构设计,是安全、高效地满足地学研究要求的岩心采取率与岩心质量的前提。在超深部取心,我国即没有成熟的经验,也无法模拟其恶劣的工况,各种形式的钻具失效均有发生的可能。

高温、高压不仅是钻井液、孔底动力钻具使用的不利因素,也制约着取心钻具单动结构的设计。单动双管(或三管保形)取心钻具是满足科学钻探岩心采取率及原状性高要求的最佳选择,而现有的单动结构多采用了密封轴承结构,在深孔高温、高压的恶劣工况下极易失效。

取心钻具管材的选型决定钻头的环状碎岩面积,这将直接影响取心钻进效率。大壁厚的管材固然能增强钻具的强度、刚度及稳定性,但也牺牲了机械钻速,反之,薄壁钻头取心则安全度降低。石油天然气钻井因取心少,较少考虑提高取心钻进机械钻速;地质岩心钻探以取心钻进为主,多使用薄壁金刚石钻进技术,以尽可能提高机械钻速以达到较好的经济效益。如何兼顾安全性和经济性,是超深井取心钻具设计的难点。

1.1.5.2 沉积岩地层取心技术

科学钻探多在构造带等地学意义重大的区域实施,地表手段难以准确预测将钻穿的地层。从国内、外来已实施的科学钻探工程来看看,都钻遇了多种复杂地层和不同类型的难钻进地层。13000m科学超深井按中、深部以浅井段(≤6000m)为沉积岩地层,超深井段(>6000m)为结晶岩地层考虑。不同地层都须有相适应的取心钻具、配套的取心钻头及相应的技术方法。

实施科学超深井是一项长期、高耗的系统工程,沉积岩地层钻探是其第一阶段,快速、高质量地完成6000m以浅沉积岩地层钻探任务,可为超深部施工提供良好的井眼条件和自信心,也为系统工程节约大量的时间、经济成本。我国已实施的SK-1井便是在浅层沉积岩地层实施的环境科学钻探工程,石油天然气钻井也几乎都是在沉积岩中完成,从经验来看,在沉积岩地层取心钻进,其难点主要为:

1)软泥岩钻头易泥包、岩心膨胀,机械钻速低、易膨胀堵心;

2)致密泥页岩中合金、PDC切削碎岩难以实现,其极低的研磨性和一定的塑性又致使磨削方式钻头打滑,钻进效率低;

3)塑性软泥岩中卡簧易失效,加上提钻过程中强大的抽吸作用,易出心岩心整体或部分被拉出的情况。

受制于取心钻头结构和保护岩心的要求,取心钻进不能像石油天然气钻井一样采用水力碎岩方式和大钻压钻进,所以,须设计适应深孔沉积岩地层的取心钻具及配套的高效取心钻头。

1.1.5.3 结晶岩地层取心技术

结晶岩地层技术难点主要是两方面:一方面是地层可钻性级别很高;另一方面是超深部应力释放导致的岩石片化、碎化。

我国已在CCSD-1井中成功的探索出了螺杆马达+液动锤孔底动力联合驱动取心钻进系统,但在高温、高压的超深井段,尚无成功经验。在超深井段,螺杆马达和液动锤的橡胶件都易在高温、高压环境中失效,仅能使用无橡胶件的涡轮马达高速回转驱动金刚石取心钻头。所以,在超深部结晶岩地层快速、安全地取心钻进是科学超深井面对的重大挑战。

SG-3井、塔深1井经验表明,在深井的构造应力带,岩石破碎严重,尤其在超深井段,地应力释放导致岩心片化,使岩心变成薄片和碎块。即使在浅层破碎地层取心,堵心仍是目前难以解决的取心技术难题。由此可见,超深部井段结晶岩破碎地层取心是最大的技术难题之一。

1)取心钻头和钻具的旋转和振动,对本就破碎岩心有破坏作用,使其难以成柱状顺利进入钻具内腔;

2)钻进液对破碎岩心的冲蚀,会造成小颗粒的损失、破坏岩心的原状性、降低采取率;

3)破碎岩心承载能力小,随着进入内管岩心长度的增加,入管阻力在内管壁摩擦力和岩心自重的双重阻力下逐渐增大,最终阻止岩心入管,造成采取率下降和回次进尺减少;

4)出心时,岩心受力状态变化,强烈释放的地应力使岩心进一步碎裂,阻碍岩心顺利出管,原状性易被破坏。

以上因素都会降低超深部地层岩心采取率、破坏岩心原状性、降低取心钻进效率。实施13000m超深井取心钻进,回次进尺之于取心钻进效率尤为重要,而深部地层堵心制约着回次进尺,这将随着取心钻进比率的增加,成为影响钻井周期的关键因素。

以上就是关于石油钻井方法有哪些?全部的内容,如果了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

 
友情链接
鄂ICP备19019357号-22