对于电力维修人员来说,他们最常遇到的一个最麻烦的问题就是电缆出现了故障,因为电缆是一个连续而长的电线,因此如果电缆发生了故障的话,一般来说是非常难进行检测和维修的。但是随着科技的发展,想要对电缆进行故障维修已经变得越来越简单,那么接下来小编就来给大家介绍一下造成电缆故障的原因以及有关电缆维修的一些方法吧。
原因
电缆故障的最直接原因是绝缘降低而被击穿。导致绝缘降低的因素很多,根据实际运行经验,归纳起来不外乎以下几种情况:
1、外力损伤。由近几年的运行分析来看,尤其是在经济高速发展中的海浦东,现在相当多的电缆故障都是由于机械损伤引起的。比如:电缆敷设安装时不规范施工,容易造成机械损伤;在直埋电缆上搞土建施工也极易将运行中的电缆损伤等。有时如果损伤不严重,要几个月甚至几年才会导致损伤部位彻底击穿形成故障,有时破坏严重的可能发生短路故障,直接影响电用电单位的安全生产。
2、绝缘受潮。这种情况也很常见,一般发生在直埋或排管里的电缆接头处。比如:电缆接头制作不合格和在潮湿的气候条件下做接头,会使接头进水或混入水蒸气,时间久在电场作用下形成水树枝,逐渐损害电缆的绝缘强度而造成故障。
3、化学腐蚀。电缆直接埋在有酸碱作用的地区,往往会造成电缆的铠装、铅皮或外护层被腐蚀,保护层因长期遭受化学腐蚀或电解腐蚀,致使保护层失效,绝缘降低,也会导致电缆故障。
4、长期过负荷运行。超负荷运行,由于电流的热效应,负载电流通过电缆时必然导致导体发热,同时电荷的集肤效应以及钢铠的涡流损耗、绝缘介质损耗也会产乍附加热量,从而使电缆温度升高。长期超负荷运行时,过高的温度会加速绝缘的老化,以至绝缘被击穿。尤其在炎热的夏季,电缆的温升常常导致电缆绝缘薄弱处首先被击穿,因此在夏季,电缆的故障也就特别多。
5、电缆接头故障。电缆接头是电缆线路中最薄弱的环节,由人员直接过失(施工不良)引发的电缆接头故障时常发生。施工人员在制作电缆接头过程中,如果有接头压接不紧、加热不充分等原网,都会导致电缆头绝缘降低,从而引发事故。
6、环境和温度。电缆所处的外界环境和热源也会造成电缆温度过高、绝缘击穿,甚至爆炸起火。
7、电缆本体的正常老化或自然灾害等其他原因。
类型
电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面:
1、三芯电缆一芯或两芯接地。
2、二相芯线间短路。
3、三相芯线完全短路。
4、一相芯线断线或多相断线。
维修方法
对于直接短路或断线故障用万用表可直接测量判断;对于非直接短路和接地故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判断故障类型。
1、零电位法
零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算。测量原理如下:将电缆故障芯线与等长的比较导线并联,在b、c两端加电压VE时,相当于在两个并联的均匀电阻丝两端接了电源,此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零,反之,电位差为零的两点必然是对应点。因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导线上移动至指示值为零时的点与故障点等电位,即故障点的对应点。S为单相闸刀开关,E为6E蓄电池或4节1号干电池,G为直流微伏表,测量步骤如下:
1)先在b和c相芯线上接上电池E,再在地面上敷设一根与故障电缆长度相等的比较导线S,该导线要用裸铜线或裸铝线,其截面应相等,不能有中间接头。
2)将微伏表的负极接地,正极接一根较长的软导线,导线另一端要求在敷设的比较导线上滑动时能充分接触。
3)合上闸刀开关S,将软导线的端头在比较导线上滑动,当微伏表指示为零时的位置即为电缆故障点的位置。
2、电桥法
电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。测量电路时,首先测出芯线a与b之间的电阻R1,R1=2RX+R其中RX为a相或b相至故障点的一相电阻值,只为短接点的接触电阻。再就电桥移到电缆的另一端,测出a1与b1芯线间的直流电阻值R2,则R2=2R(L-X) R,R(L-X)为a1相或b1相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b1与c1短路,测出b、c两相芯线间的直流电阻值,则该组织的1/2为每相芯线的电阻值,用RL表示,RL=RX R(L-X),由此可得出故障点的接触电阻值:R=R1R2-2RL表,因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,线径要足够大,与电缆芯线连接要采用压接或焊接,计算过程中小数位数要全部保留。
3、电容电流测定法
电缆在运行中,芯线之间,芯线对地都存在电容,该电容是均匀分布的,电容量与电缆长度呈线性比例关系,电容电流测定法就是根据这一原理进行测定的,对于电缆芯线断线故障的测定非常准确。测量电路如图4所示,使用设备为1-2kVA单相调压2S一台,1~100mA、0。5级交流毫安表一只。测量步骤:
1)首先在电缆首端分别测出每相芯线的电容电流(应保持施加电压相等)Ia、Ib、Ic的数值。
2)在电缆的末端在测量每相芯线的电容电流Ia1、Ib2、Ic3的数值,以核对完好芯线与断线芯线的电容之比,初步可判断出断线距离近似点。
3)根据电容量计算公式C=I/(2ΠfU)可知,正电压U、频率f不变时,C与I成正比。因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。设电缆全长为L,芯线断线点距离为X,则Ia/Ic=L/X,X=(IC/Ia)L。测量过程中,只要保证电压不变,电流表读书准确,电缆总长度测量精确,其测定误差比较小。
4、测声法
所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。其中TB为高压试验变压器,C为高压电容器,VE为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生“滋、滋”的火花放电声,对于明敷设电缆凭听觉可直接查找,若为地埋电缆,则首先要确定并标明电缆走向。在杂音最小时,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到“滋、滋”放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。
总结:小编在上文中为大家介绍了电缆故障出现的原因,一般来说电缆故障就有内因,也有外因。一般来说,内因就是遭受到了一些外力的破坏,而外因更多是因为我们的超负荷使用造成的电缆故障。给大家介绍了电缆故障的原因,以后小编还给大家介绍了电缆故障维修的方法,其中最主要的介绍的就是如何确定电缆故障位置的方法,让大家能够更好的了解。
土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:
如何检测连续运行线路控制线路故障?
点火系统的常见故障及原因有
点火系统的常见故障及原因有,我们在驾驶汽车的时候难免会遇到一些汽车故障的问题,导致汽车故障的原因有很多,所以我们需要找出相对应的故障才解决汽车的问题,那么点火系统的常见故障及原因有那些呢?
点火系统的常见故障及原因有1点火系统故障原因有:
1、低压电路常见故障,蓄电池存电不足,线连接不良或错乱,蓄电池搭铁不良,分电器或霍尔传感器损坏,点火开关损坏或接线不良,晶体管点火控制单元损坏或接线不良,低压电路故障的诊断方法大多采用电流表或电压表逐线检查来排除故障点;
2、高压电路常见的`故障,高压线脱落或漏电,分电器盖破裂击穿,分电器分火头烧蚀破裂击穿,火花塞电极间隙过大或过小,火花塞积炭过多,火花塞绝缘体损坏,点火线圈损坏或接线脱落;
3、高压电路的故障大多采用高压试火法,即将分电器中心高压线或某缸高压线拔下,将线头放置距离缸体3-6mm处,起动发动机试火,有火花且火花强烈,说明点火系工作正常。
起动发动机,检查警告灯是否点亮,若点亮,则应该用故障解码仪读取故障码,并根据故障码的内容诊断低压电路的故障,警告灯正常,则应检查点火系统的高压电路。
关闭点火开关,检测点火线圈正常与否,有故障则更换。拔下发动机曲轴位置传感器的插头,用万用表测量相应的插座端子之间的阻值,如果所测数值不符合规定,则应更换发动机曲轴位置传感器。
汽车点火系统常见故障原因:
1、火花塞故障:故障现象:火花塞积炭、油污和过热等现象。故障原因:火花塞积炭:绝缘体端部、电极及火花塞壳常覆盖着一层相当厚的黑灰色粉状柔软的积垢。
火花塞油污:故障现象:绝缘体端部、电极及火花塞壳覆盖一层机油。火花塞过热:中心电极熔化,绝缘体顶部疏松、松软,绝缘体端大部分呈灰白色硬皮;
2、点火过迟:故障现象:消音器声响沉重、急加速化油器回火、发动机冷却液温度较高、汽车行驶无力。故障原因:点火角度不正确,可以调整点火角度至规定值;
3、点火时间过早:故障现象:怠速运转不平稳,易熄火;加速时,发动机有严重的爆燃声。故障原因:该故障主要是点火正时调整失准或点火角度装配失准所致,可以连好点火测试仪,调整点火提前角到规定值。
有瑕疵的点火系统也是造成怠速不稳、加油不爽等故障现象的原因,而元凶主要是损坏的火花塞以及高压线。普通火花塞需要每40000km更换一次,昂贵的白金火嘴则为每100000km更换。当使用限期一到,就必须毫不留情地换掉。
可能的原因有:火花塞点火能量弱,有些车主为了省钱当火花塞到保养周期之后不更换,就会导致火花塞点火能量下降严重时造成缺火,而且目前很多车型的发动机多为缸内直喷,这样对火花塞的要求便更高。
点火系统的常见故障及原因有2发动机点火系统是发动机的重要系统。当点火系统出现故障时,汽车会发生什么?让我们一起来看看。当汽车发生以下情况时,很可能是点火系统出现故障。
点火系统故障现象显示
1,很难开始。
主要表现为起步困难,怠速正常,在空挡正常加油,起步时偶遇颠簸,上坡起步容易熄火。
2发动机着火了
发动机失火主要表现为车辆怠速低速无故障,高速连续行驶一段时间后开始抖动。
3车辆停止时,发动机会抖动。
主要表现为车辆在红绿灯处停车时,发动机会抖动。提高发动机转速,运行趋于稳定。
4发动机加速无力。
主要表现在冷车启动困难。启动后,发动机会出现怠速抖动、加速无力、油耗明显增加的情况。
5发动机无法启动。
主要表现在启动时,起动机旋转,但发动机不能启动。
6当车辆行驶时,它会加速。
自动变速器换挡品质正常,无换挡冲击现象,但升档点早于正常车辆,跑车抖动感幅度小且持续。车速为40公里/小时时,开始出现跑车现象,车速为60公里/小时时跑车现象最为明显。
7有时发动机不能加速,有时会自动熄火。
主要是低速行驶,有时发动机无法加速,有时会自动熄火。高速行驶时无异常。出现故障时,发动机无法加速,会突然熄火。
8发动机迅速加速并关闭。
开车时关闭发动机,故障指示灯会亮起。主要表现为快速加速时,发动机先震颤,车辆有顿挫感,然后发动机熄火,观察仪表发现故障指示灯亮。发动机发动不了汽车。但是在发动机熄火重新启动的情况下还是可以开车的。
9发动机突然无法启动。
主要是在减速过程中,仪表盘上的警示灯突然亮起,车辆熄火,发动机重新启动没有任何反应。
点火系统的常见故障及原因有3汽车点火系统除进行日常保养外,还应进行定程保养,如有条件,还应对主要机件的质量、技术性能和工作情况进行试验,必要时给以调整。
1故障分类
点火系故障按其在点火系的位置可分为二种情况:低压电路故障和高压电路故障。
(1)低压电路常见故障:
蓄电池存电不足;
线连接不良或错乱;
蓄电池搭铁不良;
分电器或霍尔传感器损坏;
点火开关损坏或接线不良;
晶体管点火控制单元损坏或接线不良;
低压电路故障的诊断方法大多采用电流表或电压表逐线检查来排除故障点。
(2)高压电路常见的故障:
高压线脱落或漏电;
分电器盖破裂击穿;
分电器分火头烧蚀破裂击穿;
火花塞电极间隙过大或过小;
火花塞积炭过多;
火花塞绝缘体损坏;
点火线圈损坏或接线脱落。
2点火时间过早
(1)故障现象:怠速运转不平稳,易熄火;加速时,发动机有严重的爆燃声。
(2)故障分析:该故障主要是点火正时调整失准或点火角度装配失准所致。
(3)排除方法:连好点火测试仪,调整点火提前角到规定值。
3点火过迟
(1)故障现象:消音器声响沉重、急加速化油器回火、发动机冷却液温度较高、汽车行驶无力。
(2)故障分析与诊断:点火角度不正确。
(3)排除方法:调整点火角度至规定值。
轨道电路故障处理
一、故障现象及原因
大致分三类:一是元器件自身故障,二是电源出现故障,三是影响电路正常工作的其它电路故障。这些是电路中比较常见的故障,其具体表现为:元器件自身故障中电动机的故障最为突出,一般故障表现为:1、电动机无法启动、电动机起动时有不正常噪音、电动机无法连续运行、电动机起动后无法停车和电动机的温升过高等。2、热继电器未复位和熔断器熔体发生熔断会导致电动机无法启动。3、线路中的触头闭合不良也会出现这种现象;4、接触器的自身损坏会导致电动机无法连续运行;5、接触器主触头被熔焊会导致无法停机;6、电动机起动时有不正常噪音的原因可能是电动机缺相和连接点接触不良等;7、电机处于过载时,通风条件不好或轴承油封损坏漏油而造成润滑不良等原因会导致温升过高。
二、故障类别
(一)短路故障
电路中不同电位的两点被导体短接起来,导致电路无法正常工作称为短路故障。造成机床短路故障的原因可能有很多方面引起,比如操作不当,缺乏保养或者由于设备本身存在质量问题等原因,从各类原因分析比较来说,其中因排屑不畅造成短路的现象最为普遍,类似故障问题尤其在加工较厚工件时更为突出。
(二)断路故障
指电路中出现由于断路电流不能正常流通的故障。若出现此种断路现象就会使系统断电,导致机床中的用电设备停止工作。断路产生的原因主要是由于机床没有及时检修和保养,电路中一些导线存放环境不好或者时间太久被腐蚀而断裂;或者在机床的电路因为工作时的振动造成连接点处的导线脱落等导致断路的发生。
(三)接地故障
电路与地面接触引起的故障。包括单相接地故障、两相和三相接地故障。此种故障发生的多数为单相接地故障,机床使用时间过长是其发生的主要原因,缺乏及时合理的检修和维护这种故障发生的主要原因,具体发生时是绝缘体的绝缘能力出现问题,最终导致金属线接触其他接地物。如果发生的接地故障为两相接地故障,其结果可能用电设备会因为接地后电压过低而无法工作。
(四)其他故障
一般出现在调试阶段,比如电路参数不匹配而出现的故障;电气控制电路中由于元器件接错顺序而出现连接故障,在连接电路时如果接反直流电源的正负极或交流电路的同名端,出现的故障称为极性故障。这些故障的出现都将大大影响电路的正常工作。
三、故障检修及处理
(一)故障检修准备
检修前首先要做好准备工作,查找机床相关技术资料,准备好常用的工具,如示波器和万用表等。
(二)故障调查分析
需要进行观察故障报警显示、观察故障现象、外观检查和机床状态确定这几方面内容。 调查过程中常用的具体方法是“问、看、听、摸”。“问”即向机床的操作员询问故障发生前后的情况,比如问故障发生时是否有烟雾、跳火、异常声音和气味出现,有无人员的误操作等因素。“看”即观察熔断器内熔体状态,判断是否熔断,观察其它元件有无烧毁,元件和导线连接螺钉是否存在松动情况,注意按照先外再内、先简单后复杂的原则进行观察。“听”:仔细听并判断电动机、变压器、接触器及各种继电器在通电后运行时的声音是否存在异常。“摸”:将机床通电运行一段时间后再断电,然后用手来摸电动机、变压器及线圈等元件是否存在明显的温升,有无局部过热现象。根据检查结果确定故障范围。
(三)检查测量
1、电压测量法:首先保持电路处于接通状态,然后利用仪表测量机床线路上某点的电压值,根据数值来判断机床电气故障点的方法。在维修检测电子电器设备的各种方法中,电压测量法是其中最常用、最基本的方法。电压测量法主要是用在测量机床的主电路电气故障上。用此法检测机床电路的故障点时具有简单、直观的特点。需要注意的是要根据,正确选择好万用表的量程,及时调整量程,注意交直流的区别以免烧坏万用表。使用电压法测量机床电气故障的方法有具体有分阶测量、分段测量和对地测量这三种。其中分阶测量法这种测量方法是以电路中某公共点作为参考点,然后逐阶测量出各处相对于参考点的电压值,若任意相邻两点之间的电压值差别过大,即可确定该点为故障点。分段测量法是分别测量同一条支路上所有电器元件两端的电压值。若测量得出某段的电压值等于电源电压时,即可确定该处为故障点。若机床使用220v电压,并且零线直接接在机床床身的,可采用对地测量法这种方法。测量过程中,若测到某点电压值为220v,即可判断该点前的元件为故障点。
2、电阻测量法:利用仪表测量线路上某点或某个元器件的通和断来确定机床电气故障点的方法。使用时特别要注意一定要切断机床电源,且被测电路没有其它支路并联。电阻测量法有分阶电阻测量和分段法电阻测量法两种。分阶测量法是当测量某相邻两阶电阻值其值突然增大,则可判断该跨接点为故障点。分段测量法是当测量到某相邻两点间的电阻值很大时,则可判断该两点间是故障点。
电缆故障定位仪定位故障步骤是怎么样的,怎么操作?
电气化区段25HZ相敏轨道电路故障处理方法
25HZ相敏轨道电路故障对行车组织构成极大影响,也是困扰电务系统的一大难题。如果把轨道电路故障压缩到最低限度,电务系统的信号故障将会压缩30﹪左右,基于这一现状,现将日常处理故障所积累的经验和所收集的一些资料归纳如下,以供现场参考。
一、 从基础做起,将故障消灭在萌芽状态。
1、 要掌握基础数据,以便在故障处理时作为参考。
2、 要认真测试,充分利用先进的技术手段(微机监测系统)查询轨道曲线,发现轨道电压有变化或轨道曲线波动时,要认真分析查找。
3、 要加强对相角的测试,通过相角的变化可以判断轨道参数的变化,如绝缘不良、防护盒不好等。
4、 处理故障时要头脑清醒,充分考虑轨道电路的区别(有无电码化叠加、一送一受还是一送多受)。有电码化叠加区段在测试时必须用频率表测试或将电码化关掉查找(叠加区段为股道)。
二、 故障处理程序,轨道电路故障时要根据故障类型进行查找。
1、 在测试或查询时发现电压波动轨道曲线不平稳(出现毛刺、时高时低)的故障查找。
a、 轨道曲线出现毛刺:当轨道曲线出现毛刺时,首先要考虑到扼流变性能(内部线圈破损、连接板接触不良)。线圈破损通过测试扼流变压器变比和扼流变压器线圈对中心连接板电压来判断,正常时变比为1:3,两线圈对中心连接板电压相等(通过晃动扼流变压器线圈可以发现轨道电压有变化)。其次要检查限流电阻弹片与电阻接触是否良好以及导接线塞钉接触是否良好b、 轨道曲线时高时低:轨道曲线时高时低时,多数问题在调整电阻接触不良或铅丝(断路器)接触不良,个别时也有监测采集模块不好。
2、 断线故障查找。
断线故障通过测试或微机查询完全可以发现,断线时轨道继电器端电压为零,轨道曲线无幅值。具体查找方法按如下步骤进行。
a、 在分线盘处测量受端电压和送端电压,受端有电压而且电压在30V以上,故障在室内,送端无电压故障也在室内。
b、 室外故障查找:在轨道送端测量室内电压是否送出,无电压说明送端电缆断线(电码化区段单送、其他区段环连);室内电压送出轨面无电压再测量扼流变压器一、二次侧电压,牵引回流线圈有电压,送流线断。牵引回流线圈无电压而信号线圈有电压,说明扼流变压器内部断线。信号线圈无电压,再测隔离变压器、轨道变压器、及通过限流电阻前后电压,并检查熔丝(断路器)以此来判断哪个器材故障。轨面电压正常(05—08V)沿送端轨面向受端查找,在轨面上分段测量并观察导线及钢轨是否断,无电压可判断导线或钢轨断。受端轨面有电压查找手段各部器材,方法同送端。(区别在于受段电压来于轨面)。
3、 混线故障查找。
混线故障通过微机监测和测试也能判断,轨道曲线幅值明显下降且起伏不定,轨道电压低且不稳。具体查找方法按如下步骤进行:
a、 甩开分线盘测受端电缆电压,如果电压大于30V,说明室外正常故障在室内。混点易出现在硒片。如甩开分线盘测得受端电压仍很低,故障在室外。
室外故障查找:查找方法为先送端后受端,通过测试送端电源电压、限流电阻电压、轨面电压来判断故障点。室外混线故障,主要包括器材内部混线(轨道变压器、扼流变压器、扼流箱)、钢轨绝缘混线、轨距杆混线、道岔安装装置绝缘混线、轨道电路引接线混线、电缆混线、道岔跳线混线等故障。室外混线故障查找方法可运用“电压比较法”、“震动法”、“甩线法”和使用25Hz轨道电路故障查找器进行查找。
4、 室内测试轨道电源正常,微机监测轨道曲线正常,轨道出现红光带。此故障在室内,故障点为二元二位继电器(微电子接收器)、轨道继电器或相位角严重超标。此类故障更换器材即可,相位角超标可暂时提高轨道电压解决。
5、 时好时坏故障
时好时坏故障的查找,必须通过观察找准故障发生的时机,观察控制台面列车运行情况及通过微机监测回放去找有价值的信息。重点看与故障区段相关区段列车运行况(是否电力机车、是否接近区段占用)。
a、电力机车通过时,出现红光带重点看故障区段回流部分,如扼流变箱引线绝缘、中性连接板螺栓、及导线部分。
b、 接近区段有车时轨道出现红光带多数有以下两种原因:一是分区绝缘不好,在车接近时受到冲击。二是故障区段有虚混处,在接近区段有车时受预发码电压的冲击,造成轨道电路短路。
以上是在日常处理故障中摸索出来的一些方法,并不成熟,仅供借鉴。要想真正压缩轨道电路故障,必须从基础抓起,掌握维修标准、加强设备的维护、善于发现问题、及时克服缺点
急!!在线等。。汽车电瓶指示灯一直亮着,问题的原因有哪些
电缆故障定位仪定位故障步骤是怎么样的,怎么操作?
电缆故障定位仪定点步骤
1、连接传感器和耳机:
将定点传感器接传感器插口,耳机接耳机插口。将工作方式设置为“智能定点”或者“波形定点”方式。
2、选择定点区域:
在定点之前,首先应明确电缆路径。如果图纸资料不完整,应进行路径探测,并做好标志。根据测距结果,考虑电缆头盘余量、地形因素,粗略确定故障点位置,由于不可避免的存在估算误差,一般应在(测距值 ± 50m)之间定点。
在选定的区域,将传感器平放于电缆正上方的地面,方向指向电缆铺设方向,观察波形并用耳机听,开始定点。
3、调整磁场增益:
使当高压发生器开始对故障电缆周期放电后,调整仪器的磁场增益(磁场自动增益 打开后不需要调整增益。手动调整方法见第二章的“磁场自动增益”部分),使“磁场触发标志”闪烁和高压发生器的放电同步。
4、调整声音增益:
当磁场增益正常同步后,再调整声音增益。 当“磁场触发标志”指示亮时,声音信号同步采样一次,波形更新。调整声音增益,使声音波形足够大且不失真。智能定点界面调整声音信号强度在40%~90%之间。
声音信号(包括噪声)在不断变化,要随时看到真实的声音波形,需要不断地调整其增益,但根据经验,声音信号增益可以调的较大,只要不是每次都失真即可,不必随时调整。
5、寻找并逼近故障点:
以大约05~2m的间隔移动传感器,如果连续几次放电,均没有看到典型声音波形,则应继续向前移动,直至多次放电的声音波形都与典型波形非常相似,而且稳定(除非当时有很大的噪声出现),说明已经到了故障点的附近,采集到了真正的故障点放电声音信号。这时用耳机听,会在“信号”指示灯闪亮的同时,听到较沉闷的一声“啪”。一般来说,靠观察声音波形得到的响应范围大于听声的响应范围,而且单纯听声较难分辨。
6、测量声磁延时,准确定位:
看到放电声音波形后,再波形显示方式下,按左右键调整光标位置,将其移动到声音波形的起始点上,此延时值能代表故障点的远近,但由于很难确知声音在电缆周围复杂介质中的传播速度,也不知道电缆埋设的具体深度,所以不能计算出传感器和故障点之间的准确水平距离。
注意:光标在其它位置时,显示的声磁延时值没有意义。
以较小的间隔不断改变传感器的位置,并测量声磁延时,直至找到延时值小的点,其正下方即是故障点,误差在02m之内。
7、电缆短路点怎样检测利用电缆位置指示进行路径探测:
使用时使传感器方向指向电缆铺设方向和定点前进方向。电缆位置指示如果指示左箭头,则表示电缆位于传感器左边。如果指示右箭头,则表示电缆位于传感器右边。指示原点,则表示电缆在传感器正下方。
8、注意事项:
尽量不要将传感器置于电缆本体上进行定点,否则会在电缆任何位置都能听到微弱的啪啪声,此为大电流瞬间放电形成的电应力造成的震动,整条电缆上均存在,不能利用此信号进行定点。
有时电应力震动也能传到地面。在远离故障点时,如果非常仔细的听,有时能够在电缆全长上都能听到很微弱的啪啪声,且不会随传感器位置的不同而发生变化,此即为电应力震动,其与真正的故障放电声差别很大,注意不要误判。
一般车辆电瓶灯亮说明车辆的发电系统出现了故障,常见的故障点有:
1 可能是发电机内部损坏,导致发电量不足。
2 可能是发电机的皮带盘打滑,导致发电机的动力来源受阻,发电机无法工作。
3 可能是发电机的线路出现了故障,导致发电量不足。
4 可能是电瓶出现了亏电的故障,无法存储电量,所以电瓶灯亮,这时就需要检查下电瓶的健康状况,如果电瓶健康状况低于10%就需要更换电瓶了。
以上就是常见的电瓶灯亮的故障点。
如何确定是电瓶还是发电机存在故障呢?
可以使用万用表测量电瓶的电压,正常的车辆没有启动时电瓶电压在12V左右,如果电频电压低于10V,那就说明电瓶出现了故障。
启动之后再次车辆电瓶电压,如果电瓶电压在14V左右,那就说明发电机的工作正常,发电量正常。如果低于12V那就说明发电机不发电,发电机存在故障了。
电瓶灯亮之后就不建议继续行驶车辆,因为这时车辆的发电系统存在故障了,如果继续行驶会导致车辆各个部件的用电量不足,车辆会自动洗后和抛锚。影响车辆的正常行驶。正确的做法就是把车辆靠边停车,拨打救援公司的电话,把车辆拖至维修点维修。
以上就是关于电缆故障原因以及维修方法全部的内容,包括:电缆故障原因以及维修方法、电灯泡常见故障、点火系统的常见故障及原因有等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!