#五子棋import appuifw,e32,key_codes
from graphics import *def cn(x):return x.decode('utf-8')
def quit(): _quit=1
global running
running=1
def redraw(rect): canvas.blit(img)def default():
global con,color,font
con={"l":15,"x":15,"y":33,"r":13,"n":15}
color={"bg":0x7777bb,"fg":0x333333,"p1":0x000000,"p2":0xffffff,"w":0xff0000}
font=u"Sans MT 936_S60"def initial():
global img,canvas,con,color,cur_x,cur_y,turn,pos1,pos2,pos
appuifw.app.screen='full'
appuifw.app.body=canvas=appuifw.Canvas()
img=Image.new((240,320))
img.clear(color["bg"])
cur_x=7
cur_y=7
turn=1
pos1=[]
pos2=[]
pos=[]
for i in range(con["n"]*con["n"]):
pos.append(0)def paint_back():
global img,color,font
#img.text((90,25),cn('欢乐五子棋'),color["fg"],font)
for i in range(con["x"],con["x"]+con["l"]*con["n"]-1,con["l"]):
img.line((i,con["y"],i,con["y"]+con["l"]*(con["n"]-1)),color["fg"])
for i in range(con["y"],con["y"]+con["l"]*con["n"]-1,con["l"]):
img.line((con["x"],i,con["x"]+con["l"]*(con["n"]-1),i),color["fg"])
img.text((40,270),cn('玩家1'),color["p1"],font)
img.text((160,270),cn('玩家2'),color["p2"],font)
img.point((90,263),color["p1"],width=con["r"],fill=color["p1"])
img.point((144,263),color["p2"],width=con["r"],fill=color["p2"])
def paint_cur(x,y,sh):
global img,con,color,pos1,pos2,running
if running<>1:return
ax=con["x"]+con["l"]*x
ay=con["y"]+con["l"]*y
b=con["l"]/2
if sh<>0:
c=color["p"+str(sh)]
if rp((x,y))<>0:
c=color["w"]
if sh==0:
c=color["bg"]
img.line((ax-b,ay-2,ax-b,ay-b,ax-2,ay-b),c)
img.line((ax-b,ay+2,ax-b,ay+b,ax-2,ay+b),c)
img.line((ax+b,ay-2,ax+b,ay-b,ax+2,ay-b),c)
img.line((ax+b,ay+2,ax+b,ay+b,ax+2,ay+b),c)
redraw(())def paint_q(x,y,z):
global img,con,color
ax=con["x"]+con["l"]*x
ay=con["y"]+con["l"]*y
b=con["l"]/2
if z==0:
c=color["bg"]
else:
c=color["p"+str(z)]
img.point((ax,ay),c,width=con["r"],fill=c)
redraw(())
if z==0:
img.line((ax-b,ay,ax+b,ay),c)
img.line((ax,ay-b,ax,ay+b),c)
def k_up():
global cur_x,cur_y,con,turn
paint_cur(cur_x,cur_y,0)
cur_y=cur_y-1
if cur_y==-1:
cur_y=con["n"]-1
paint_cur(cur_x,cur_y,turn)def k_down():
global cur_x,cur_y,con,turn
paint_cur(cur_x,cur_y,0)
cur_y=cur_y+1
if cur_y==con["n"]:
cur_y=0
paint_cur(cur_x,cur_y,turn)def k_left():
global cur_x,cur_y,con,turn
paint_cur(cur_x,cur_y,0)
cur_x=cur_x-1
if cur_x==-1:
cur_x=con["n"]-1
paint_cur(cur_x,cur_y,turn)def k_right():
global cur_x,cur_y,con,turn
paint_cur(cur_x,cur_y,0)
cur_x=cur_x+1
if cur_x==con["n"]:
cur_x=0
paint_cur(cur_x,cur_y,turn)def rp(x):
global con,pos
if (x[0]<0 or x[0]>=con["n"] or x[1]<0 or x[1]>=con["n"]):return 0
#print x,pos[x[0]*con["n"]+x[1]]
return pos[x[0]*con["n"]+x[1]]def wp(x,y):
global con,pos
pos[x[0]*con["n"]+x[1]]=y
def win():
for i in pos1:
k=0
for j in range(0,6):
if rp((i[0]+j,i[1]))==1:
k=k+1
else:
break
if k>=5:
return 1
k=0
for j in range(0,6):
if rp((i[0],i[1]+j))==1:
k=k+1
else:
break
if k>=5:
return 1
k=0
for j in range(0,6):
if rp((i[0]+j,i[1]+j))==1:
k=k+1
else:
break
if k>=5:
return 1
k=0
for j in range(0,6):
if rp((i[0]+j,i[1]-j))==1:
k=k+1
else:
break
if k>=5:
return 1 for i in pos2:
k=0
for j in range(0,6):
if rp((i[0]+j,i[1]))==2:
k=k+1
else:
break
if k>=5:
return 2
k=0
for j in range(0,6):
if rp((i[0],i[1]+j))==2:
k=k+1
else:
break
if k>=5:
return 2
k=0
for j in range(0,6):
if rp((i[0]+j,i[1]+j))==2:
k=k+1
else:
break
if k>=5:
return 2
k=0
for j in range(0,6):
if rp((i[0]+j,i[1]-j))==2:
k=k+1
else:
break
if k>=5:
return 2
return 0
def k_enter():
global cur_x,cur_y,turn,pos1,pos2,con,color,font,running
if running<>1:return
if rp((cur_x,cur_y))==0:
if turn==1:
pos1.append((cur_x,cur_y))
img.rectangle((35,255,100,272),color["bg"])
img.rectangle((135,255,200,272),color["p2"])
if turn==2:
pos2.append((cur_x,cur_y))
img.rectangle((35,255,100,272),color["p1"])
img.rectangle((135,255,200,272),color["bg"])
paint_q(cur_x,cur_y,turn)
wp((cur_x,cur_y),turn)
if win()<>0:
#img.text((80,300),cn('玩家')+str(turn)+cn("获胜!"),color["fg"],font)
img.rectangle((35,255,100,272),color["bg"])
img.rectangle((135,255,200,272),color["bg"])
paint_cur(cur_x,cur_y,0)
running=2
turn=3-turn
paint_cur(cur_x,cur_y,turn)def bindkey():
canvas.bind(key_codes.EKeyUpArrow, k_up)
canvas.bind(key_codes.EKeyDownArrow,k_down)
canvas.bind(key_codes.EKeyLeftArrow, k_left)
canvas.bind(key_codes.EKeyRightArrow,k_right)
canvas.bind(key_codes.EKeySelect,k_enter)default()
initial()
paint_back()
paint_cur(cur_x,cur_y,1)
img.rectangle((35,255,100,272),color["p1"])
bindkey()redraw(())
appuifw.app.exit_key_handler = quit()
_quit=0
while (1-_quit):
e32.ao_sleep(0.2)
redraw(())
游戏规则:从一副扑克牌中抽取4张牌,对4张牌使用加减乘除中的任何方法使计算结果为24,例如(((4-2)+6)*3) = 24,最快算出24者胜。
实现思路:参照原作者想法,由于设计到了表达式,很自然的想到了用二叉树来实现。简单概括为:先列出所有表达式的可能性,然后运用表达式树,也就是二叉树计算表达式的值,当然还需要使用递归来具体实现各个功能,下面我们具体来实现下吧。
表达式树的所有叶子节点均为操作数(operand), 其它节点为运算符(operator),本次采用二叉树来表示表达式中各个属性的值,这样也方便我们计算。
首先是遍历所有表达式的可能情况,这里得到得是操作数所有可能得情况,假如传入的l是序列[1,2,3,4],count1是4,count2是4,那么得到的结果就是12个随机且不重复的[1,2,3,4]序列
同理,产生运算符的不同排列结果
然后根据传入的表达式的值,构造表达式树,首先我们创建一个表示节点的类
然后树的形式无非两种,就是上面大家看到的两种形式,用程序表示出来就是两种函数,参数分别对应了运算符和运算符,还是比较好理解的,知识涉及一些二叉树的知识。
然后就是计算表达式树的值,这里也运用了递归。
输出所有可能的结果,这里注意print_node方法也是使用的递归来打印数据,并且使用 end='' 去掉了换行符。
最后在程序的入口调用calculate方法,并传入数据,也就是你得到的牌。
成果: